When To Use []CT With Rationals?

Bob Smith Sudley Place Software Originally Written 31 Sep 2017 Updated 14 Nov 2017

The Question

Should CT be used when comparing a Rational number with an Integer or Rational number?

The following (symmetric) table lays out the existing choices (ignoring Hypercomplex numbers), almost all of which use []CT for comparisons:

	INT	FLT	MPIR	MPFR
INT	N	Y	?	Y
FLT	Y	Y	Υ	Y
MPIR	?	Y	?	Y
MPFR	Y	Υ	Υ	Υ

- INT = Fixed-Precision 64-bit Integer
- FLT = Fixed-Precision 64-bit Floating Point
- MPIR = Multiple-Precision Integer/Rational
- MPFR = Multiple-Precision Floating Point

The above table applies to the usual dyadic \Box CT-sensitive comparison functions ($\equiv \neq = < \le > \neq \iota \in \underline{\iota } \in$) all of which normally use \Box CT on FLTs and MPFRs. All comparisons are assumed to be with both arguments non-zero so absolute tolerance is not an issue.

In case you are not familiar with Rational numbers, they are stored as as two Multiple-Precision Integers – numerator and denominator – and written as, for example, 2r3 which is an exact version of 2÷3. The range of Multiple-Precision Integers is limited only by the amount of available workspace.

Examples

Near Integer Functions

This question also applies to other primitives such as **Floor** and **Ceiling** where \Box CT is normally used to decide the result. In particular, in the above example, what is the value of $\lceil ar (1 \text{ or } 2) \text{ or } \lfloor br (0 \text{ or } 1) - should they be sensitive to <math>\Box$ CT?

Integer-Only Functions

Other functions such as **GCD**, **LCM**, **Residue**, and **Encode** on FLTs/MPFRs employ some form of Comparison Tolerance (perhaps not exactly [CT) to decide when to terminate. These functions reference Comparison Tolerance in two ways: directly through some form of (Fixed System-wide?) Comparison Tolerance and indirectly as [CT through their reliance on Floor and/or Ceiling. How should they treat MPIRs?

I view these primitives as fundamentally **Integer-only** functions not only because that's their fundamental domain, but that should be their only domain. In fact, I go so far as to suggest banning FLTs/MPFRs (DOMAIN ERROR) on these functions, but that's a separate topic for discussion.

Integer Tolerance

On the other hand, we should continue to use **Integer Tolerance** on all kinds of numeric datatypes to detect whether or not a non-integer is close enough to use as an integer such as with the left argument to the various structural primitives.

The Arguments

Pro: As MPIRs are dense in the real number line, they can be arbitrarily close to Integers as well as to each other (unlike INT v. INT comparisons): so [CT should be used because MPIRs are dense. If you don't want to use [CT for such comparisons, set it to zero, either explicitly or through the Variant operator on a primitive-by-primitive basis.

Con: As opposed to FLTs, MPIRs are meant to be exact and not an approximation to a range of FLTs which are limited by the IEEE-754

Standard to 53 bits of precision: so \Box CT should not be used because MPIRs are exact, not a stand-in for an infinite range of more precise numbers. That is, no matter how close together are two MPIRs, they are still different exact numbers. If you want to use \Box CT for such comparisons, convert the INTs/MPIRs to MPFRs (using { 'v' \Box DC ω }) and then compare them.

What Do You Think?

As you can see, my arguments revolve around dense v. exact and I can't decide which is more important here. At one time or another, I have implemented it both ways. Recently, I noticed that the current implementation is of both minds! Help!

Bob Smith <u>bsmith@sudleyplace.com</u> 304-707-7963