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The Question

The following (symmetric) table lays out the existing choices (ignoring
Hypercomplex numbers), almost all of which use [CT for
comparisons:

INT FLT MPIR MPFR
FLT Y Y Y Y
MPFR Y Y Y Y
INT = Fixed-Precision 64-bit Integer
FLT = Fixed-Precision 64-bit Floating Point
MPIR = Multiple-Precision Integer/Rational

MPFR = Multiple-Precision Floating Point



The above table applies to the usual dyadic JCT-sensitive comparison
functions (s#=<<=2>#1€1¢€) all of which normally use [JCT on FLTs
and MPFRs. All comparisons are assumed to be with both arguments
non-zero so absolute tolerance is not an issue.

In case you are not familiar with Rational numbers, they are stored as
as two Multiple-Precision Integers — numerator and denominator —
and written as, for example, 2r3 which is an exact version of 2+3.
The range of Multiple-Precision Integers is limited only by the amount
of available workspace.

Examples

OCT<«1E~10

O«af<«1+1E715
1.000000000000001

O«bf«1-1E715
0.999999999999999

af=bf
1

O«ar<«<1+1E~15x
1000000000000001r100000000000000O0

O«br«1-1E~15x
999999999999999r1000000000000000

ar=br
2222

Near Integer Functions

This question also applies to other primitives such as Floor and
Ceiling where [ICT is normally used to decide the result. In particular,
in the above example, what is the value of [ ar (1 or 2) or Lbr (0 or 1)
— should they be sensitive to [JCT?



Integer-Only Functions

Other functions such as GCD, LCM, Residue, and Encode on
FLTs/MPFRs employ some form of Comparison Tolerance (perhaps
not exactly [JCT) to decide when to terminate. These functions
reference Comparison Tolerance in two ways: directly through some
form of (Fixed System-wide?) Comparison Tolerance and indirectly as
OCT through their reliance on Floor and/or Ceiling. How should they
treat MPIRs?

| view these primitives as fundamentally Integer-only functions not
only because that’s their fundamental domain, but that should be their
only domain. In fact, | go so far as to suggest banning FLTs/MPFRs
(DOMAIN ERROR) on these functions, but that's a separate topic for
discussion.

Integer Tolerance

On the other hand, we should continue to use Integer Tolerance on
all kinds of numeric datatypes to detect whether or not a non-integer is
close enough to use as an integer such as with the left argument to
the various structural primitives.

The Arguments

Pro: As MPIRs are dense in the real number line, they can be
arbitrarily close to Integers as well as to each other (unlike INT v. INT
comparisons): so [JCT should be used because MPIRs are dense. If
you don’t want to use [JCT for such comparisons, set it to zero, either
explicitly or through the Variant operator on a primitive-by-primitive
basis.

Con: As opposed to FLTs, MPIRs are meant to be exact and not an
approximation to a range of FLTs which are limited by the IEEE-754
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Standard to 53 bits of precision: so [JCT should not be used because
MPIRs are exact, not a stand-in for an infinite range of more precise
numbers. That is, no matter how close together are two MPIRs, they
are still different exact numbers. If you want to use [JCT for such
comparisons, convert the INTs/MPIRs to MPFRs (using {'v' [DCw})
and then compare them.

What Do You Think?

As you can see, my arguments revolve around dense v. exact and |
can't decide which is more important here. At one time or another, |
have implemented it both ways. Recently, | noticed that the current
implementation is of both minds! Help!
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