
When To Use ⎕CT
With Rationals?

Bob Smith
Sudley Place Software

Originally Written
31 Sep 2017

Updated
14 Nov 2017

The Question
Should ⎕CT be used when comparing a Rational number with an

Integer or Rational number?

The following (symmetric) table lays out the existing choices (ignoring
Hypercomplex numbers), almost all of which use ⎕CT for
comparisons:

INT FLT MPIR MPFR

INT N Y ? Y

FLT Y Y Y Y

MPIR ? Y ? Y

MPFR Y Y Y Y

INT = Fixed-Precision 64-bit Integer
FLT = Fixed-Precision 64-bit Floating Point
MPIR = Multiple-Precision Integer/Rational
MPFR = Multiple-Precision Floating Point

-1-

The above table applies to the usual dyadic ⎕CT-sensitive comparison
functions (≡≢=<≤=≥>≠⍳∊⍸⍷) all of which normally use ⎕CT on FLTs
and MPFRs. All comparisons are assumed to be with both arguments
non-zero so absolute tolerance is not an issue.

In case you are not familiar with Rational numbers, they are stored as
as two Multiple-Precision Integers – numerator and denominator –
and written as, for example, 2r3 which is an exact version of 2÷3.
The range of Multiple-Precision Integers is limited only by the amount
of available workspace.

Examples
 ⎕CT←1E¯10
 ⎕←af←1+1E¯15
1.000000000000001
 ⎕←bf←1-1E¯15
0.999999999999999
 af=bf
1
 ⎕←ar←1+1E¯15x
1000000000000001r1000000000000000
 ⎕←br←1-1E¯15x
999999999999999r1000000000000000
 ar=br
????

Near Integer Functions
This question also applies to other primitives such as Floor and
Ceiling where ⎕CT is normally used to decide the result. In particular,
in the above example, what is the value of ⌈ar (1 or 2) or ⌊br (0 or 1)
– should they be sensitive to ⎕CT?

-2-

Integer-Only Functions
Other functions such as GCD, LCM, Residue, and Encode on
FLTs/MPFRs employ some form of Comparison Tolerance (perhaps
not exactly ⎕CT) to decide when to terminate. These functions
reference Comparison Tolerance in two ways: directly through some
form of (Fixed System-wide?) Comparison Tolerance and indirectly as
⎕CT through their reliance on Floor and/or Ceiling. How should they
treat MPIRs?

I view these primitives as fundamentally Integer-only functions not
only because that’s their fundamental domain, but that should be their
only domain. In fact, I go so far as to suggest banning FLTs/MPFRs
(DOMAIN ERROR) on these functions, but that’s a separate topic for
discussion.

Integer Tolerance
On the other hand, we should continue to use Integer Tolerance on
all kinds of numeric datatypes to detect whether or not a non-integer is
close enough to use as an integer such as with the left argument to
the various structural primitives.

The Arguments
Pro: As MPIRs are dense in the real number line, they can be
arbitrarily close to Integers as well as to each other (unlike INT v. INT
comparisons): so ⎕CT should be used because MPIRs are dense. If
you don’t want to use ⎕CT for such comparisons, set it to zero, either
explicitly or through the Variant operator on a primitive-by-primitive
basis.

Con: As opposed to FLTs, MPIRs are meant to be exact and not an
approximation to a range of FLTs which are limited by the IEEE-754

-3-

Standard to 53 bits of precision: so ⎕CT should not be used because
MPIRs are exact, not a stand-in for an infinite range of more precise
numbers. That is, no matter how close together are two MPIRs, they
are still different exact numbers. If you want to use ⎕CT for such
comparisons, convert the INTs/MPIRs to MPFRs (using {'v' ⎕DC⍵})
and then compare them.

What Do You Think?
As you can see, my arguments revolve around dense v. exact and I
can't decide which is more important here. At one time or another, I
have implemented it both ways. Recently, I noticed that the current
implementation is of both minds! Help!

Bob Smith
bsmith@sudleyplace.com
304-707-7963

-4-

mailto:bsmith@sudleyplace.com

