When To Use [JCT
With Rationals?

Bob Smith
Sudley Place Software
Originally Written
31 Sep 2017
Updated
14 Nov 2017

The Question

The following (symmetric) table lays out the existing choices (ignoring
Hypercomplex numbers), almost all of which use [CT for
comparisons:

INT FLT MPIR MPFR
FLT Y Y Y Y
MPFR Y Y Y Y
INT = Fixed-Precision 64-bit Integer
FLT = Fixed-Precision 64-bit Floating Point
MPIR = Multiple-Precision Integer/Rational

MPFR = Multiple-Precision Floating Point



The above table applies to the usual dyadic JCT-sensitive comparison
functions (s#=<<=2>#1€1¢€) all of which normally use [JCT on FLTs
and MPFRs. All comparisons are assumed to be with both arguments
non-zero so absolute tolerance is not an issue.

In case you are not familiar with Rational numbers, they are stored as
as two Multiple-Precision Integers — numerator and denominator —
and written as, for example, 2r3 which is an exact version of 2+3.
The range of Multiple-Precision Integers is limited only by the amount
of available workspace.

Examples

OCT<«1E~10

O«af<«1+1E715
1.000000000000001

O«bf«1-1E715
0.999999999999999

af=bf
1

O«ar<«<1+1E~15x
1000000000000001r100000000000000O0

O«br«1-1E~15x
999999999999999r1000000000000000

ar=br
2222

Near Integer Functions

This question also applies to other primitives such as Floor and
Ceiling where [ICT is normally used to decide the result. In particular,
in the above example, what is the value of [ ar (1 or 2) or Lbr (0 or 1)
— should they be sensitive to [JCT?



Integer-Only Functions

Other functions such as GCD, LCM, Residue, and Encode on
FLTs/MPFRs employ some form of Comparison Tolerance (perhaps
not exactly [JCT) to decide when to terminate. These functions
reference Comparison Tolerance in two ways: directly through some
form of (Fixed System-wide?) Comparison Tolerance and indirectly as
OCT through their reliance on Floor and/or Ceiling. How should they
treat MPIRs?

| view these primitives as fundamentally Integer-only functions not
only because that’s their fundamental domain, but that should be their
only domain. In fact, | go so far as to suggest banning FLTs/MPFRs
(DOMAIN ERROR) on these functions, but that's a separate topic for
discussion.

Integer Tolerance

On the other hand, we should continue to use Integer Tolerance on
all kinds of numeric datatypes to detect whether or not a non-integer is
close enough to use as an integer such as with the left argument to
the various structural primitives.

The Arguments

Pro: As MPIRs are dense in the real number line, they can be
arbitrarily close to Integers as well as to each other (unlike INT v. INT
comparisons): so [JCT should be used because MPIRs are dense. If
you don’t want to use [JCT for such comparisons, set it to zero, either
explicitly or through the Variant operator on a primitive-by-primitive
basis.

Con: As opposed to FLTs, MPIRs are meant to be exact and not an
approximation to a range of FLTs which are limited by the IEEE-754

_3-



Standard to 53 bits of precision: so [JCT should not be used because
MPIRs are exact, not a stand-in for an infinite range of more precise
numbers. That is, no matter how close together are two MPIRs, they
are still different exact numbers. If you want to use [JCT for such
comparisons, convert the INTs/MPIRs to MPFRs (using {'v' [DCw})
and then compare them.

What Do You Think?

As you can see, my arguments revolve around dense v. exact and |
can't decide which is more important here. At one time or another, |
have implemented it both ways. Recently, | noticed that the current
implementation is of both minds! Help!

Bob Smith
bsmith@sudleyplace.com
304-707-7963



mailto:bsmith@sudleyplace.com

