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The Question
Should ⎕CT be used when comparing a Rational number with an

Integer or Rational number?

The following (symmetric) table lays out the existing choices (ignoring 
Hypercomplex numbers), almost all of which use ⎕CT for 
comparisons:

INT FLT MPIR MPFR

INT N Y ? Y

FLT Y Y Y Y

MPIR ? Y ? Y

MPFR Y Y Y Y

INT = Fixed-Precision 64-bit Integer
FLT = Fixed-Precision 64-bit Floating Point
MPIR = Multiple-Precision Integer/Rational
MPFR = Multiple-Precision Floating Point
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The above table applies to the usual dyadic ⎕CT-sensitive comparison
functions (≡≢=<≤=≥>≠⍳∊⍸⍷) all of which normally use ⎕CT on FLTs 
and MPFRs.  All comparisons are assumed to be with both arguments
non-zero so absolute tolerance is not an issue.

In case you are not familiar with Rational numbers, they are stored as 
as two Multiple-Precision Integers – numerator and denominator – 
and written as, for example, 2r3 which is an exact version of 2÷3.  
The range of Multiple-Precision Integers is limited only by the amount 
of available workspace.

Examples
      ⎕CT←1E¯10
      ⎕←af←1+1E¯15
1.000000000000001
      ⎕←bf←1-1E¯15
0.999999999999999
      af=bf
1
      ⎕←ar←1+1E¯15x
1000000000000001r1000000000000000
      ⎕←br←1-1E¯15x
999999999999999r1000000000000000
      ar=br
????

Near Integer Functions
This question also applies to other primitives such as Floor and 
Ceiling where ⎕CT is normally used to decide the result.  In particular,
in the above example, what is the value of ⌈ar (1 or 2) or ⌊br (0 or 1)
– should they be sensitive to ⎕CT?
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Integer-Only Functions
Other functions such as GCD, LCM, Residue, and Encode on 
FLTs/MPFRs employ some form of Comparison Tolerance (perhaps 
not exactly ⎕CT) to decide when to terminate.  These functions 
reference Comparison Tolerance in two ways:  directly through some 
form of (Fixed System-wide?) Comparison Tolerance and indirectly as 
⎕CT through their reliance on Floor and/or Ceiling.  How should they 
treat MPIRs?

I view these primitives as fundamentally Integer-only functions not 
only because that’s their fundamental domain, but that should be their 
only domain.  In fact, I go so far as to suggest banning FLTs/MPFRs 
(DOMAIN ERROR) on these functions, but that’s a separate topic for 
discussion.

Integer Tolerance
On the other hand, we should continue to use Integer Tolerance on 
all kinds of numeric datatypes to detect whether or not a non-integer is
close enough to use as an integer such as with the left argument to 
the various structural primitives.

The Arguments
Pro:  As MPIRs are dense in the real number line, they can be 
arbitrarily close to Integers as well as to each other (unlike INT v. INT 
comparisons):  so ⎕CT should be used because MPIRs are dense.  If 
you don’t want to use ⎕CT for such comparisons, set it to zero, either 
explicitly or through the Variant operator on a primitive-by-primitive 
basis.

Con:  As opposed to FLTs, MPIRs are meant to be exact and not an 
approximation to a range of FLTs which are limited by the IEEE-754 
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Standard to 53 bits of precision:  so ⎕CT should not be used because 
MPIRs are exact, not a stand-in for an infinite range of more precise 
numbers.  That is, no matter how close together are two MPIRs, they 
are still different exact numbers.  If you want to use ⎕CT for such 
comparisons, convert the INTs/MPIRs to MPFRs (using {'v' ⎕DC⍵})
and then compare them.

What Do You Think?
As you can see, my arguments revolve around dense v. exact and I 
can't decide which is more important here.  At one time or another, I 
have implemented it both ways.  Recently, I noticed that the current 
implementation is of both minds!  Help!
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