
Solving Simultaneous Linear
Diophantine Equations in APL

Bob Smith
Sudley Place Software

Originally Written
11 Jul 2021

Updated
16 Oct 2023

Introduction
The problem posed by Eric Lescasse (through Roy Sykes1) back in 
2018, intrigued me as initially it looked like it might be solvable through 
Matrix Divide. It turned out that its solution is related to Matrix Divide, 
but only when restricted to integers:

Given an integer matrix’s row & column sums (each, of course, 
summing to the same grand total), return an integer matrix with 
the same row & column sums. Of course, there may be several 
solutions.

The “several solutions” turned out to be either the solution is unique or 
there are an infinite number of solutions.

Example
For example, (origin-1 and multi-precision integers throughout)

-1-



      ⎕←M←?4 3⍴10x
4 6 10
4 5  1
3 1  7
5 4  9
      ⎕←RS←+/M ⍝ The row sums
20 10 11
      ⎕←CS←+⌿M ⍝ The column sums
18 16 16 27
      ⎕←nRC←×/(nR nC)←⍴M ⍝ The #rows/cols/entries
12

Encoding The Information
Although the original matrix M is unknown to us, we can represent it 
symbolically as follows:

m11 m12 m13 
m21 m22 m23 
m31 m32 m33 
m41 m42 m43

Now, the nR equations for row sums (RS) are represented as (I 
apologize for mixing notations, but you get the idea)

m11 + m12 + m13 = RS[1]
m21 + m22 + m23 = RS[2]
m31 + m32 + m33 = RS[3]
m41 + m42 + m43 = RS[4]

These equations can be encapsulated into a Boolean coefficient matrix
of nR rows (equations) with nRC columns (unknowns):

      ⎕←RS_EQ←nR nRC⍴(nRC+nC)↑nC⍴1
m11 m12 m13   m21 m22 m23   m31 m32 m33  m41 m42 m43

1 1 1   0 0 0   0 0 0  0 0 0 = RS[1]
0 0 0   1 1 1   0 0 0  0 0 0 = RS[2]
0 0 0   0 0 0   1 1 1  0 0 0 = RS[3]
0 0 0   0 0 0   0 0 0  1 1 1 = RS[4]

-2-



Similarly, the nC equations for the column sums (CS) are

m11 + m21 + m31 + m41 = CS[1]
m12 + m22 + m32 + m42 = CS[2]
m13 + m23 + m33 + m43 = CS[3]

These equations can be encapsulated into a Boolean coefficient matrix
of nC rows (equations) with nRC columns (unknowns):

      ⎕←CS_EQ←⊃,/nR⍴⊂∘.=⍨⍳nC
m11 m12 m13   m21 m22 m23   m31 m32 m33   m41 m42 m43

1 0 0   1 0 0   1 0 0   1 0 0 = CS[1]
0 1 0   0 1 0   0 1 0   0 1 0 = CS[2]
0 0 1   0 0 1   0 0 1   0 0 1 = CS[3]

Joining these two Boolean coefficient matrices along the 1st coordinate 
(RS_EQ⍪CS_EQ) yields nR+nC equations, each with nRC unknowns as 
follows (call this Boolean coefficient matrix, A):

1 1 1 0 0 0 0 0 0 0 0 0 = RS[1]
0 0 0 1 1 1 0 0 0 0 0 0 = RS[2]
0 0 0 0 0 0 1 1 1 0 0 0 = RS[3]
0 0 0 0 0 0 0 0 0 1 1 1 = RS[4]
1 0 0 1 0 0 1 0 0 1 0 0 = CS[1]
0 1 0 0 1 0 0 1 0 0 1 0 = CS[2]
0 0 1 0 0 1 0 0 1 0 0 1 = CS[3]

With C←RS,CS, the problem is to solve for the length nRC vector X in 
the matrix equation:  C≡A+.×X, where (by definition) X←,M is always a 
solution, as in C≡A+.×,M.

Simultaneous Linear Diophantine Equations
Specifically, we are asking to solve a set of Simultaneous Linear 
Diophantine Equations (SLDEs, pronounced as “slides”) where the 
name Diophantine refers to the 3rd century A.D. Greek Mathematician 
Diophantus2 who pioneered the study of integer solutions to integer 
equations.

Such equations were first solved by H.J.S. Smith in his 1861 paper3. In 

-3-



it, he defines a Smith Normal Form (SNF) which along with two 
associated matrices can be used to solve SLDEs.

Calculating The Smith Normal Form
Calculation of the SNF4 produces three matrices as follows:

      (U B V)←⌹⍠'s' A

The code behind this variant on Domino implements a multi-precision 
algorithm with is a proposed addition for the FLINTError: Reference source not found 
library to calculate the two associated SNF unimodular matrices. The 
matrix B is the SNF matrix (and is diagonal only) and U and V are 
unimodular (integer matrices whose determinate is ±1, and are thus 
integer-invertible). If the shape of A is m by n, then the shape of B is the
same as A (m by n), U is m by m, and V is n by n.

The algorithm to calculate the SNF starts with U and V as identity 
matrices with B as a copy of A, which preserves the identity

      B≡U+.×A+.×V                                                                      (1)

The algorithm continues by using elementary row and column 
operations, where row operations on B are reflected in U and column 
operations on B are reflected in V.  Throughout, the goal is to transform
B into a diagonal matrix, and, at all stages, preserve the above 
identity.

The first part of the SNF algorithm looks very much like Gaussian 
Elimination in that its goal is to transform the lower left triangle of B to 
all zeros. However, instead of division to perform the reduction, it uses 
GCD because the goal is also to preserve the Diophantine nature of 
the matrices. Similarly, the upper right triangle of B is reduced to all 
zeros through the same type of transformations, but using column 
operations. In other words, one part of SNF could call a Gaussian 
Elimination operator with its own operand as opposed to (say) the 
code to calculate a determinant (-.×R) which would use a different 
operand.

-4-



The second part of the SNF algorithm is to ensure uniqueness by 
converting the diagonal entries such that they are successively divisors
of the next higher entry (Pairwise Chain Divisible). That is,

       ∧/0=2|/1 1⍉B

At the end, the SNF matrix B is diagonal, meaning that all entries 
outside the diagonal are zero.

Starting with equation (1):

    B            ≡U+.×A+.×V
←→ (B+.× ⌹V)     ≡U+.×A+.×V+.×⌹V right-divide by V
←→ (B+.× ⌹V)     ≡U+.×A                     identity matrix
←→ (B+.×(⌹V)+.×X)≡U+.×A+.×X            right-multiply by X
←→ (B+.×(⌹V)+.×X)≡U+.×C                     because            C≡A+.×X
←→ (B+.×(⌹V)+.×X)≡D                              substitute          D←U+.×C

It’s possible for the trailing entries on the diagonal of B also to be zero, 
meaning that because B is central to all these calculations, whatever is 
multiplied by those zero entries is irrelevant. That's how we can end up 
with an infinite number of solutions. The count of leading non-zero 
entries in the diagonal of B is

      fx←+/∧\0≠1 1⍉B

Essentially, this value counts the number of fixed unknowns, and 
fr←n-fx counts the number of free unknowns. That is, if an element 
on the diagonal of B is zero, whatever it is multiplied by has no effect 
on the result, and so the multiplied-by value is “free”.

Now, construct the vector

      Y←n↑(fx↑D)÷fx↑1 1⍉B

By construction, because B is a diagonal matrix

      B+.×Y ←→ (1 1 ⍉B)×Y

and because of the way Y was constructed (the elements of B’s 
diagonal are in the denominator of Y)

      D≡B+.×Y    ⍝ ⍴D ←→ n

-5-



but we can only be sure of this equation for the 1st fx entries. If any of 
the remaining entries in D (remember that D←U+.×C) are non-zero,
(∨/0≠fx↓D), there are no solutions.

Moreover, this makes sense only if the entries of Y are all integers 
(^/Y=⌊Y); if not, there are no solutions.

Continuing the above sequences of equations

    B            ≡U+.×A+.×V
←→ (B+.× ⌹V)     ≡U+.×A+.×V+.×⌹V right-divide by V
←→ (B+.× ⌹V)     ≡U+.×A                     identity matrix
←→ (B+.×(⌹V)+.×X)≡U+.×A+.×X             right-multiply by X
←→ (B+.×(⌹V)+.×X)≡U+.×C                      because            C≡A+.×X
←→ (B+.×(⌹V)+.×X)≡D                               substitute          D←U+.×C
←→ (B+.×(⌹V)+.×X)≡B+.×Y                      substitute          D≡B+.×Y
←→ (    (⌹V)+.×X)≡Y                               left-multiply by  ⌹B
←→             X ≡V+.×Y                      left-multiply by  V

Assuming there are any solutions, if there are no free unknowns 
(fr=0) the solution is unique, if there are free unknowns (fr>0), the 
number of solutions is infinite.

Solving The Set of SLDEs
The solution6 appears on Wikipedia, and is translated into APL in the 
following function:

-6-



    ∇ (V Y fr)←C sldeSolve A;U B D fx m n
[1]   ⍝ Calculate X such that C≡A+.×X
[2]   ⍝  where ⍴C ←→ m
[3]   ⍝        ⍴A ←→ m n
[4]   ⍝        ⍴X ←→ n
[5]   (m n)←⍴A ⋄ :Assert (,m)≡⍴C
[6]   (U B V)←⌹⍠'s' A ⍝ Calculate Smith Normal Form
[7]   ⍝ ⍴U ←→ m m   ⍴B ←→ m n   ⍴V ←→ n n
[8]   :Assert B≡⊃+.×/U A V
[9]   ⍝ Calculate (fx fr) ←→ # fixed/free unknowns
[10]  fx←+/∧\0≠1 1⍉B ⋄ fr←n-fx
[11]  D←U+.×C ⍝ Helper matrix
[12]
[13]  Y←n↑(fx↑D)÷fx↑1 1⍉B    ⍝ ⍴Y ←→ n
[14]
[15]  ⍝ Check for solution:  Y must be all integers,
[16]  ⍝ and the <fr> trailing entries of D are all 0
[17]  ⎕ERROR((1∊Y≠⌊Y)∨1∊0≠fx↓D)/'NO SOLUTION'
[18]  :Assert D≡B+.×Y
[19]
[20]  ⍝ The solution to C≡A+.×X is X←V+.×Y
[21]  :Assert C≡A+.×V+.×Y
    ∇

which is called as

      (V Y fr)←C sldeSolve A

Assuming there are solutions, the vector X←V+.×Y solves the matrix 
equation C≡A+.×X.

Free Unknowns
If there are free unknowns, the trailing zeros in Y may be any arbitrary 
values and V+.×Y will still generate a solution with the same row & 
column sums as the input matrix. Assuming fr>0, the trailing fr 
elements of Y may be any random integers (say, RI←?fr⍴¯∞). That is, 

-7-



if V+.×Y is a solution, so is

      V+.×Y+(-⍴Y)↑RI                                                           (2)

Because the trailing fr elements of Y are zero, the trailing fr columns 
of V are irrelevant, and we can break them out and re-write (2) as

      (V+.×Y)+((-fr)↑[2]V)+.×RI
 ←→         X+((-fr)↑[2]V)+.×RI         because X←V+.×Y

This means that because X is a solution to the SLDEs, so is

      X+((-fr)↑[2]V)+.×RI

Because we have free variables which may assume an infinite number 
of values, the probability that X is the same as M is zero, although the 
infinite number of solutions all have the same row & column sums as M.
We knew from the beginning that (by definition) ,M would satisfy the 
original matrix equation C≡A+.×,M.

Even though there are an infinite number of free variables, there is one 
set of them that can re-create the original matrix. That is, we want to 
solve the matrix equation:

      ( ,M)   ≡X+((-fr)↑[2]V)+.×RI
      ((,M)-X)≡  ((-fr)↑[2]V)+.×RI        Subtract X

where the vector RI is the vector of unknowns to calculate.

Just as before, when we wanted to solve for X in the SLDE

      C≡A+.×X

we called

      (V Y fr)←C sldeSolve A

In this case, we call

      (V2 Y2 fr2)←((,M)-X) sldeSolve (-fr)↑[2]V

Note that this time, fr2=0, meaning that there no free unknowns for 
this solution (i.e., it’s unique), and that RI←V2+.×Y2 provides exactly 
the correct random integers to re-create the original matrix:

      M≡(⍴M)⍴X+((-fr)↑[2]V)+.×RI

-8-



Note that even when the solution is unique (fr=0 and M≡X), the above 
equation is still valid, and sldeSolve is passed a zero-column matrix 
on the right and returns V2 a zero by zero matrix and Y2 an empty 
vector. Then V2+.×Y2 is an empty vector, multiplying it on the left by a 
zero-column matrix produces a vector of zeros which added to X 
leaves X unchanged, and matches M. In other words, empty arrays just 
work!

Applications

Chemistry7

• balancing chemical equations8

• determining the molecular formula of a compound

Transportation and Logistics

Because these industries work so often in integer units (people, trucks, 
boxes, warehouses, etc.), it is natural to use Diophantine equations.

Biology9

• analysis of S-shaped curves of the growth of microorganisms

Cryptography10

• elliptic curve cryptography is based on doing calculations in finite field
(also called Galois fields) for a diophantine equation of degree 3 in 
two variables

And many, many more.

Downloads
This paper is an ongoing effort and can be out-of-date the next day. To 
find the most recent version, goto http://sudleyplace.com/APL  /   and look
for the title of this paper on that page.

-9-

http://sudleyplace.com/APL


The latest beta version of NARS2000 implements the Smith Normal 
Form primitive.  It may be found online at

https://nars2000.org/download/binaries/beta/

in either 32- or 64-bit versions. The APL code above may be found in 
the workspace online at

http://nars2000.org/download/workspaces/SNF.ws.nars.

References
1. Personal communication, 18 Dec 2018.

2. Diophantus, Wikipedia, https://en.wikipedia.org/wiki/Diophantus

3. Smith, Henry J. Stephen  , Wikipedia (1861). "On systems of linear 
indeterminate equations and congruences". Phil. Trans. R. Soc. 
Lond. 151 (1): 293–326. doi:10.1098/rstl.1861.0016. 
JSTOR 108738. Reprinted (pp. 367–409) in The Collected 
Mathematical Papers of Henry John Stephen Smith, Vol. I, edited 
by J. W. L. Glaisher. Oxford: Clarendon Press (1894), xcv+603 
pp. 

4. Smith Normal Form, Wikipedia, 
https://en.wikipedia.org/wiki/Smith_normal_form

5. FLINT library (https://flintlib.org) with a proposed addition written by 
and copyright © 2015 Alex J. Best.
https://github.com/alexjbest/flint2/tree/alex/old/fmpz_mat/snf_*.c

6. Wikipedia, Systems of Linear Diophantine Equations, 
https://en.wikipedia.org/wiki/Diophantine_equation#System_of_lin
ear_Diophantine_equations

7. Crocker, Roger. (1968). “Application of diophantine equations to 
problems in chemistry”. Journal of Chemical Education - J CHEM 
EDUC. 45. 10.1021/ed045p731.
https://pubs.acs.org/doi/10.1021/ed045p731

-10-

https://pubs.acs.org/doi/10.1021/ed045p731
https://en.wikipedia.org/wiki/Diophantine_equation#System_of_linear_Diophantine_equations
https://en.wikipedia.org/wiki/Diophantine_equation#System_of_linear_Diophantine_equations
https://github.com/alexjbest/flint2/tree/alex/old/fmpz_mat/
https://flintlib.org/
https://en.wikipedia.org/wiki/Smith_normal_form
https://en.wikipedia.org/wiki/James_Whitbread_Lee_Glaisher
https://archive.org/details/collectedmathema01smituoft
https://archive.org/details/collectedmathema01smituoft
https://archive.org/stream/collectedmathema01smituoft#page/366/mode/2up
https://www.jstor.org/stable/108738
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://doi.org/10.1098%2Frstl.1861.0016
https://en.wikipedia.org/wiki/Doi_(identifier)
https://en.wikipedia.org/wiki/Philosophical_Transactions_of_the_Royal_Society_of_London
https://en.wikipedia.org/wiki/Philosophical_Transactions_of_the_Royal_Society_of_London
https://en.wikipedia.org/wiki/Henry_John_Stephen_Smith
https://en.wikipedia.org/wiki/Diophantus
http://nars2000.org/download/workspaces/SNF.ws.nars
https://nars2000.org/download/binaries/beta/


8. 2019 JETIR June 2019, Volume 6, Issue 6, “Applications of 
diophantine equations in chemical equations”
https://www.jetir.org/papers/JETIR1906I86.pdf

9. Klykov SP (2021) “Application of diophantine equations for practical 
problems solution in biology”. Open J Bac 5(1): 013-016. DOI: 
10.17352/ojb.000019,
https://www.peertechzpublications.com/articles/OJB-5-119.php

10. “Algorithmic solution of Diophantine equations and applications to 
cryptography II”,
https://graz.elsevierpure.com/en/projects/algorithmic-solution-of-
diophantine-equations-and-applications-to

-11-

https://graz.elsevierpure.com/en/projects/algorithmic-solution-of-diophantine-equations-and-applications-to
https://graz.elsevierpure.com/en/projects/algorithmic-solution-of-diophantine-equations-and-applications-to
https://www.peertechzpublications.com/articles/OJB-5-119.php
https://www.jetir.org/papers/JETIR1906I86.pdf

