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Released Features

Language Features

Implement Ball Arithmetic

Up to now, the simple scalars of APL have been single values, even 
though they may have multiple axes such as Hypercomplex numbers 
(e.g., 1i2) – they are still considered single points in the appropriate 
space such as the Complex plane.  Ball Arithmetic is different – here, 
a simple scalar in Ball Arithmetic is a range of Floating Point (FP) 
numbers such as 1.2±1E¯10.  This very intuitive notation represents 
a Ball of Radius 1E¯10 around the midpoint of the Ball, 1.2.  The 
purpose of this datatype is to provide a first cut of Numerical Analysis 
of an algorithm.  That is, instead of analyzing your algorithm’s use of 
FP numbers, first run it through with Ball Arithmetic.

For example, here are three ways of calculating the square root of 
two, first using fixed precision FP, second as Multiple-Precision FP, 
and last using Ball Arithmetic:
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      √2
1.4142135623730951
      ⎕FPC←128
      √2v
1.41421356237309504880168872420969807857
      √2±
1.41421356237309504880168872420969807857±5.9E¯39

The last result is qualitatively different from the first two in that, as a 
Ball, it is guaranteed to contain the exact answer, in this case, for 
the Square Root function, but regardless of the primitive function.  
We know that the Square Root function returns an irrational result 
guaranteed to be inexact.  Since we can’t return an exact result, the 
next best representation is as a Ball.  Essentially, Balls contain a built-
in error term (i.e., Radius).

Note that the Radius is a function of the specified precision (in ⎕FPC). 
If you desire a narrower Radius, just increase the precision as in

      ⎕FPC←256
      √2±
1.41421356237309504880168872420969807857±1.7E¯77

By doubling the number of bits of precision, we narrowed the Radius 
by about 38 orders of magnitude!  The additional precision in this 
result is not displayed only because of a small ⎕PP.

If your FP algorithm is fed Balls as input, it propagates them without 
type demotion where each successive primitive calculates the 
appropriate Ball Radius for its result.  At the end the result is 
guaranteed to contain the exact answer.  No more guessing, no more 
hoping that there are no ill-conditioned dark corners in your FP code.  
If you are concerned about the precision and accuracy of your FP 
code, you need Ball Arithmetic.

For more details see Ball Arithmetic1.
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Implement Hyperators

The sequence of objects: Arrays, Functions, and Operators appear in 
ascending order with the property that each later object consumes 
one or two of the earlier objects and produces an object in the 
sequence one order less. For example, a Function takes Array(s) and 
produces an Array; an Operator takes Function(s) and/or Array(s) and 
produces a (derived) Function. 

Hyperators (as described by John Scholes3) extend this sequence by 
one:

• a Hyperator has one or two Hyperands (which may be any of 
the three lower classes of Operators, Functions, or Arrays) and 
yields ... 

• a (derived) Operator has one or two Operands (which may be 
any of the two lower classes of Functions or Arrays) and yields ...

• a (derived) Function has zero, one, or two Arguments (Arrays) 
and yields... 

• an Array. 

This new class of objects leads to new syntax and new ways to 
describe algorithms in APL.  As an example of a primitive Hyperator, 
there is the Transform Hyperator4 (DownTackOverbar ⍑ Alt-’B’).

For more details, see Hyperators2.

Implement Numerical Differentiation Operator

While working on the Matrix operator, I’ve found I needed a Numerical
Differentiation operator which is now implemented.  The symbol 
chosen for this monadic operator is CurlyD (∂) (Alt-’D’  U+2202) used 
in mathematics for Partial Derivatives.

For example,
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      !∂0 ⋄ ¯1g1
¯0.5772156649015363
¯0.5772156649015329
      !∂∂0 ⋄ 1g2+1p2÷6
1.9781119906525646
1.978111990655945

That is, the exact value of first derivative of the Factorial function at 0 
is -, where  is Gamma, the Euler-Mascheroni constant, and the 
exact value pf the second derivative is 2+2/6.  The derived function 
may be called dyadically, too:

      X←0.6 ⋄ 1○ X ⋄ 2○X∂
0.825335614909687
0.8253356149096783

where the first derivative of the Sine function is the Cosine function.

For more details, see the paper “Numerical Differentiation in APL”5.

Implement ⎕DFT (Discrete Fourier Transform)

The usual DFT algorithm is implemented as a Fast Fourier Transform 
(FFT) algorithm three times, one for each FP datatype:

• Fixed Precision Integer or Floating Point, the FFT algorithm from 
Gnu Scientific Library is used 

• Multiple Precision Integer/Rational or Floating Point, the FFT 
algorithm MPFFT is used 

• Ball Arithmetic, the FFT algorithm from ARB is used 

The dyadic version with a left argument of ¯1 returns the Inverse 
DFT.

In the context of Hyperators, this System Function is equivalent to the 
function

      DFT←+{*(⍳⍴⍵)∘.×(⍳⍴⍵)×○0J¯2÷⍴⍵}⍑×

where the Anonymous Function is the (Left) Hyperand to the 
Transform Hyperator (⍑).  This specific text is recognized as an idiom 
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and the appropriate FFT function is executed.  Similarly, the Inverse 
DFT function (¯1 ⎕DFT) is equivalent to

      iDFT←+{(*(⍳⍴⍵)∘.×(⍳⍴⍵)×○0J2÷⍴⍵)÷⍴⍵}⍑×

the text of which is also recognized as an idiom so as to invoke the 
appropriate Inverse FFT code.

For example,

      ⎕DFT 1 2 3 4
10 ¯2J2 ¯2 ¯2J¯2 
      ¯1 ⎕DFT ⎕DFT 1 2 3 4
1 2 3 4

This System Function has been superseded by the Transform 
Hyperator.  For more details, see Hyperators2.

Implement APL2 Vector Notation W.R.T. Right Operands

Following the lead of APL2, numeric strands as a Right Operand 
(which has short right scope) are split apart with the first number 
alone as the Right Operand and the rest of the strand forming part of 
the Right Argument.  This treatment minimizes the number of 
parentheses needed, except in the case of a dyadic operator (such as
Rank) when its Right Operand is a multi-element numeric vector.

For example, with this change

      +DOP 1 2 3 ←→ (+DOP 1) 2 3

For more details, see Vector Notation9.

This treatment is especially needed with Hyperators both of whose 
Hyperands are defined to have short scope.  For more details, see 
Hyperators2.

Implement Mask and Mesh

Following the proposal by Iverson8 and the syntax proposed in the 
original NARS manual7, these two functions are implemented as

Mask:  L (a∘/) R     or     L (a∘⌿) R     or     L (a∘/[X]) R
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Mesh:  L (a∘\) R     or     L (a∘⍀) R     or     L (a∘\[X]) R

where a is a control vector which chooses whether the next element 
of the result is from the Left or Right Arguments and its multiplicity.

Mask returns a subset of the items from the Left and Right 
Arguments in order but interleaved, possibly repeated multiple times
and possibly omitting values from one or both arguments, combined 
into a single result, according to the values in a.  In the vector case, 
and except for scalar extension, the two arguments and the control 
vector have the same number of elements.  During processing of the 
two arguments and the control vector, indices into all three 
components are incremented in parallel.  A negative value in the 
control vector selects the same indexed value from the Left Argument;
a positive value selects the same indexed value from the Right 
Argument; a zero skips the same indexed value in both arguments.  
The absolute value of the control vector value indicates how many 
times the selected value is repeated in the result.

For example,

      'ABC' (¯1 3 ¯2∘/) 'abc'
AbbbCC
      (3 3⍴⎕A) (¯1 3 ¯2∘/) 3 3⍴⎕a
AbbbCC
DeeeFF
GhhhII

The function   L (LO∘/[X]) R   is essentially equivalent to 

(|LO~0)/[X] (⊂(⍋×LO,-LO)[⍋⍋×LO~0])⌷[X] L,[X] R

Mesh returns all items from the left and right arguments in order but 
interleaved, possibly repeated multiple times and possibly including 
the Right Argument's fill element, combined into a single result, 
according to the values in a.  During processing of the two arguments 
and the control vector, indices into all three components are 
incremented independently.  A negative value in the control vector 
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selects the next value from the Left Argument; a positive value selects
the next value from the Right Argument; a zero inserts the Right 
Argument’s fill element.  The absolute value of the control vector value
indicates how many times the selected value is repeated in the result.

For example,

  'I' (1 ¯1 2 ¯1 2 ¯1 2 ¯1 ∘\) 'MSSP'
MISSISSIPPI
  'BIB'  (¯1 ¯1 1 ¯1 1 0 1 1 2 1 1 1 ∘\) 'LOBAGINS'
BILBO BAGGINS

This function   L (LO∘\[X]) R   is essentially equivalent to 

(|LO)\[X] (⊂⍋⍋×LO~0)⌷[X] L,[X] R

Note that this definition is dependent upon extending the Expand 
function to (Signed) Integer Left Arguments.

Also, notice the amount of code shared between the two algorithms, 
especially the interesting snippet ⍋⍋×LO~0.

Implement 'ah' Point Notation

Complementing the three other Polar (or Angle) Point Notations of 
'ad', 'ar', and'au', the 'ah' point notation maps the Angle into 
the interval [¯0.5, 0.5]  where the Line of Discontinuity is the 
negative real axis, as opposed to the other three forms where the 
Line of Discontinuity is the positive real axis.

Allow All Input Point Notations As Output Forms

With this change, all Input Point Notations may appear in Output.  In 
particular, the Complex Number Display Separator now has more 
choices, all controlled by the System Variable ⎕FC[7].  The value of 
⎕FC[7] may be one of 'iJdhru' which correspond to the 
separators 'i', 'J', 'ad', 'ah', 'ar', and 'au'.  For example,
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      fc←{⎕FC[1⊃⍺]←2⊃⍺ ⋄ ⍕⍵}
      7 'i' fc 2i¯3
2i¯3
      7 'J' fc 2i¯3
2J¯3
      7 'd' fc 2i¯3
3.6056ad303.7
      7 'h' fc 2i¯3
3.6056ah¯0.1564
      7 'r' fc 2i¯3
3.6056ar5.300
      7 'u' fc 2i¯3
3.6056au0.8436

All Numeric Output Display Is Sensitive To ⎕FC

For example,

      ⍝ Decimal point, Negative sign, Complex sep
      (1 6 7)':@J' fc 2.3i¯4.5
2:3J@4:5

The only exception to this rule is ⎕FMT which has its own symbol 
substitution mechanism.

Implement Chained Guards In AFOs

By Chained Guards, I mean two or more consecutive Guard 
statements in an Anonymous Function/Operator, such as
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       f←{
➥0=≡⍵:    ⍝ Scalar
➥0≡⊤⍵:    ⍝ Simple Numeric
➥1==⍵:    ⍝ Real
➥0=2|⍵:   ⍝ Even
➥'Scalar, Simple Numeric, Real, Even'
➥ ⋄ 'None of the above'}
       f 2
Scalar, Simple Numeric, Real, Even
       f 'a'
None of the above
       f ¯2
Scalar, Simple Numeric, Real, Even
       f 1i2j3k4
None of the above

The several conditions cannot be combined into a single APL 
statement separated by the And function because the interpreter will 
evaluate all of the conditions even if an early one proves to be FALSE,
and then signal an error on (say) character input.

Session Manager and Workspaces

Use Line Continuations In Output For Wrapped Lines

For example, with a narrow Page Width,

      )LOAD J:\workspaces\allmfs
SAVED 08/10/2019 16:18:34
      ⎕pw←40
      )ops
 DetSing   DydConv   DydDot2   DydMask   
➥DydMesh   DydRank   DydScan   DydScan1  
➥IdnConv   IdnJotDot MatOpr    MonDot    
➥MonDotCr  MonRank   RoS2      RoS3      
➥RoS1L     RoS1R
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Implement )BOX [ON|OFF]

This just means that output may be run through Monadic ⎕FMT before 
display.

Implement Workspace Features To Allow Multiple Non-Downward
Compatible Features To Co-exist

This allows me to have different levels of workspace formats for each 
project, such as Ball Arithmetic and Hyperators each of which has its 
own different format for storing its new functions and datatypes.

Preserve Visual Fidelity When Mixing CRs, LFs, And BSs In 
Character Output

In other words, CR moves the output cursor to the first column of the 
line, LF moves it to the same column in the next line, and BS moves it 
to the preceding column unless that’s the first column.

For example,

      'abc',⎕TCLF,⎕TCBS,'d',1,⎕TCLF,'ef',⎕TCNL,'gh'
 abc
➥  d 1
➥gh    ef

In order to see the formatting characters, turn on Output Debugging 
as in “Edit | Customize... | User Preferences | Enable Output 
Debugging”, and uncheck “Except for CR and LF”:

      'abc',⎕TCLF,⎕TCBS,'d',1,⎕TCLF,'ef',⎕TCNL,'gh'

abc*(d 1*ef-gh

Allow (and Ignore) Underbar In Numeric Input

The Underbar is used as a visual separator when entering long 
numbers.  It is ignored when calculating the value of the number.  For 
example,
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      12_345_678
12345678

Make More Commands Sensitive To Line Continuations

In particular, commands that produce multiple lines of output such as
)FNS, )VARS, )OPS, )LIB, etc. display a Line Continuation Marker at 
the start of a Continued Line.

Implementation Features

Rename MFO (Magic Function/Operator) Locals To Avoid Conflict
With User Variables

This means that the local names in a MFO are in a different 
Namespace from the user-accessible names, so that if a Magic 
Operator calls a User-Defined Function/Operator from within the MFO,
the UDFO’s locals cannot see the MFO’s locals.  In particular, 
because the MFO local names all start with a $, those names are 
inaccessible to UDFOs.

Miscellaneous Features

Change Definition Of ¯9○ and 9○ Functions

The Old and New definitions are

¯9○R 9○R

Old R Re(R)

New (R-+R)÷2 (R++R)÷2

For all numbers, the change to 9○ is insignificant:  the only difference 
might be whether the result is still a Hypercomplex number whose 
Imaginary part(s) are all 0, or is a Real number – solely an 
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implementation choice.  In either case, the value is the same.

For Complex numbers, the change to ¯9○ is significant:  the result 
changes from R to a copy of R with the Real part set to 0, and th

e Imaginary parts unchanged.  This differs from the previous result 
where both the Real and Imaginary parts are unchanged.  However, 
given the trivial nature of the old definition, I’d be very interested to 
read how anyone uses it.

For Hypercomplex numbers, the change to ¯9○ is very useful:  the 
result is now a Pure Imaginary number.  That is, the result is the 
original number with the Real part set to 0.  Once you get beyond 
Complex numbers, this concept is an integral part of the various 
definitions and theorems on Hypercomplex numbers.  Even 
Wikipedia6 uses the shorter term Imaginary number for the more 
accurate term Pure Imaginary number indicating how often that 
concept is needed.

Note the pleasant symmetry between the new definitions of 9○R and 
¯9○R along with the identity R≡+⌿¯9 9∘.○R.

For example, the definition of a Cross Product of two Quaternions 
numbers is now

{¯9○<(∘⌻¯9○⍺)+.×>¯9○⍵}

where

• >⍵ splits out the coefficients of a Hypercomplex number into a Real 
vector of length 1, 2, 4, or 8

• <⍵ is the inverse of >⍵

• ∘⌻ returns the Matrix Representation of a Hypercomplex number.

Implement Lexicographic and Gray Code order of certain results 
from Combinatorial operator

When the Left Operand of the Combinatorial Operator has two 
numbers, the second one is a flag where 0 means  Count the 
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answers, 1 means Generate the answers, 2 means Generate the 
answers in Lexicographic Order (alphabetic), and 3 means Generate 
the answers in Gray Code order (single swap from one line to the 
next).

For example,

Permutations

Lexicographic Order Gray Code Order

      110 2‼3
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

      110 3‼3
1 2 3
1 3 2
3 1 2
3 2 1
2 3 1
2 1 3

Implement 10 ⎕AT To Distinguish Function Types

For example, where FOH = Function, Operator, or Hyperator:
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Function
Example

Operator
Example

Hyperator
Example

0 The object is not a 
FOH

1 Primitive FOH f←+ f←/ f←⍑

2 Derived FOH f←+/ f←⍨∘÷ f←⍑×

3 User-defined FOH ∇f ∇(LO f) R ∇(LO (LH f RH)) R

4 System FOH f←⎕NL

5 Anonymous FOH f←{⍺+⍵} f←{⍺⍺/¨⍵} f←{⍺⍺⍺⍨⍺⍺/¨⍵}

6  Train f←(+/÷≢) ??? ???

7 Name-Associated 
Function

Not as yet 
implemented

8 Java-Associated 
Function

See Java 
Support

Implement Ascending/Descending Subsequences

An Ascending subsequence of one vector in another (L⍳⍠'a' R) is 
a set of indices of L (barring items Not Found) such that 
R≡L[L⍳⍠'a' R] and ∧/2</L⍳⍠'a' R, that is the indices are 
monotonically increasing. This primitive is written such that it returns 
the smallest values that satisfy the above conditions. All datatypes are
valid for the left and right arguments; the result is always an integer 
vector of the same length as R.

For example:
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      L←2 7 1 5 7 1 2 1 7 1
      R←5 2 7 1
      L⍳⍠'a' R
4 7 9 10
      L[L⍳⍠'a' R]
5 2 7 1

A Descending subsequence of one vector in another (L⍳⍠'d' R) is a
set of indices of L (barring items Not Found) such that 
R≡L[L⍳⍠'d' R] and ∧/2>/L⍳⍠'d' R, that is the indices are 
monotonically decreasing. This primitive is written such that it returns 
the largest values that satisfy the above conditions. All datatypes are 
valid for the left and right arguments; the result is always an integer 
vector of the same length as R.

For example:

      L←1 2 5 7 2 1 5 7 1 2 5 5 1 2 7
      R←5 2 7 1
      L⍳⍠'d' R
12 10 8 6
      L[L⍳⍠'d' R]
5 2 7 1

Both of these useful idioms are hard to write non-looping in APL, so 
this is one way to gain access to them.

Implement Additional Hypercomplex Multiplication Variants

For L×⍠C R, the following definitions hold for Quaternion/Octonion 
(Non-commutative) numbers:

-15-



C Name Quaternion/Octonion — Non-commutative

'i' Interior 
product

((L×R)+R×L)÷2

'e' Exterior 
product

((L×R)-R×L)÷2

'x' Cross 
product

¯9○<(∘⌻¯9○L)+.×>¯9○R   Quaternions only
where ¯9○R returns (R-+R)÷2, i.e. as a pure 
imaginary number

'd' Dot product (>L)+.×>R

'c' Conjugation
product

L×R÷L

Handle ¯0 In More Cases

Negative zero is a great idea foiled by the lack of hardware support.  
IEEE-754 Floating Point numbers support it well, but Integers don’t.

Among other places, it is useful as a value in the identity R≡÷÷R.  If R 
is ¯∞, then ÷R is ¯0, and ÷÷R is back to ¯∞.  However, if we don’t 
support ¯0, then the identity fails because ÷¯∞ is 0, not ¯0.  
Essentially, the two numbers ¯0 and ¯∞ go together – support one, 
support the other.

The problem is that there is no hardware representation of ¯0 as a 64-
bit integer.  As a result, when we negate a Boolean or Integer zero, 
the entire array must blow up to FP, which is not very desirable.

I continue to support this feature, but only if you tell me to.  That is, if 
you set ⎕FEATURE[2]←1, then negative zero should appear when 
you expect it.  Otherwise, don’t expect that identity to hold.
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Implement APL2's Definition Of Inner Product

The definition of Inner Product in both APL2 and APL+Win is different 
from the definition in NARS/Dyalog in an interesting way.  The two 
definitions (on vectors) are

L f.g R ←→ f/L g  R   APL1, APL2, and APL+Win
        ←→ f/L g¨ R   NARS/Dyalog

When Nested Arrays came around, this was extended by NARS and 
Dyalog to replace g in the righthand part above with g¨ so as to 
maintain the same shape rule for the result.  Before APL2 was 
released, their definition was changed so as not to make that 
substitution.

One compelling reason I like the APL2/APL+Win definition is that it 
can emulate the NARS/Dyalog definition simply by writing f.(g¨), 
but not the other way around.  In other words, the APL2/APL+Win 
definition is more general than the NARS/Dyalog definition and is 
compatible with NARS/Dyalog for primitive scalar dyadic functions 
because the Each operator on a PSDF is idempotent.  Nonetheless, I 
went with the shape-rule-preserving definition and support the 
APL2/APL+Win definition via a feature switch:  ⎕FEATURE[5]←1.

For example,

      a←3 6⍴'Queue EschewAchoo '
      a
Queue 
Eschew
Achoo 
      ⎕FEATURE[5]←0
      a+.∊'aeiou'
LENGTH ERROR
      a+.∊'aeiou'
         ∧
      ⎕FEATURE[5]←1
      a+.∊'aeiou'
4 1 2 
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Extend Index Coalescing To Indexed Assignment And Modified 
Indexed Assignment

Index Coalescing means that you may write as many instances of […]
in a row as you like and they will be processed Left-to-Right in the 
expected way.  For example,

 a     [2 3⍴⍳6][1 2;2 3][⊂2 2]
≡a             [1 2;2 3][⊂2 2]
≡a                      [⊂2 3]
≡a[6]

in origin-1.  With this change, Index Coalescing now works in Indexed 
Assignment and Modified Indexed Assignment.

Implement Extended Replicate And Expand For Negative Integer 
Left Arguments

These two features were implemented some time ago, but I thought 
I’d mention them as Mask and Mesh depend upon them.  For 
example,

       1 ¯2 1/1 2 3
1 0 0 3
      2 ¯1 1 2\1 2 3
1 1 0 2 3 3

Implement Full Support For NaNs, Remove From ⎕FEATURE

A NaN (Not-a-Number) is a concept from the IEEE-754 Floating Point 
Standard and is used as a fill element for an unknown value (among 
other uses).  The symbol used is ∅, where =∅ ∅ is TRUE.  This 
feature used to be temporary and was enabled by setting 
⎕FEATURE[4]←1 – now it’s fully supported.
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Implement Power Operator Except For Inverses

I hesitated to mention this feature as I haven’t implemented the most 
important part which is Inverses, but they’ll happen.  I did it once in the
original NARS, I can do it again (if only I had more time).

Implement Conforming Disclose in ⊃R

This feature is actually needed in the Rank operator when merging the
individual results back into a single array.  Previously, each item in the 
Right Argument was required to be a scalar or have the same rank 
and shape as every other item.  With this change, the items are all 
massaged first to have the same rank and shape, then they are joined
together.  For example,

      ⊃(1 2 3 4)(2 3⍴⍳6)(⍪10 20)
 1 2 3 4
 0 0 0 0

 1 2 3 0
 4 5 6 0

10 0 0 0
20 0 0 0

Implement short left argument to dyadic Squad, UpArrow, and 
DownArrow

A handy shortcut from SHARP APL.  For example,

      2⌷2 3⍴⍳6
4 5 6 
      3↑2 3⍴⍳6
1 2 3
4 5 6
0 0 0
      1↓2 3⍴⍳6
4 5 6
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Essentially, the Axis Operator [⍳≢L] is assumed.

Implement ?0 To Return A Random Number In [0, 1)

Another handy feature from Dyalog APL.  For example,

      ⎕pp←5
      ?3⍴0
0.16404 0.51644 0.22442

Note that this primitive is sensitive to the value of ⎕DT.

Change name Of ⎕DQ to ⎕LR to reflect its wider usage

This System Variable was originally defined and named to provide 
access to the two possible Division Quotients when dividing non-
commutative numbers (i.e., Quaternions and Octonions).  Later, I 
expanded its usage considerably from the Division primitive function 
to the

• Circular

• Multiplication

• Residue

• Matrix Inverse/Divide

• Encode

• And

• Or

primitive functions, as well as the

• Matrix

• Inner Product

primitive operators.

These are all places where a programmer needs to choose between 
two possible (Left and Right) results.
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Extend Variant Operator To Inner Product

As you may be aware, Inner Product has two identity elements:  a Left
and a Right one.  For example, the Left identity element for a 2 by 3 
matrix is a 2 by 2 identity matrix, whereas the Right identity element is
a 3 by 3 identity matrix.  Which identity element is returned (when 
needed) depends upon the setting of the System Variable ⎕LR.  
However, instead of setting this System Variable directly, you may use
the Variant operator to put it into effect as in

      ⊃+.×⍠'l'/0⍴⊂2 3⍴⍳8
1 0 
0 1 
      ⊃+.×⍠'r'/0⍴⊂2 3⍴⍳8
1 0 0 
0 1 0 
0 0 1 

In the process of implementing this feature, I rewrote the Variant 
operator code to be data-driven as there are now a great many cases 
(see above) where the Variant operator is used.

Implement Axis Operator For Condense and Dilate

These functions create and take apart Hypercomplex numbers.  For 
example,
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      <2 2⍴⍳4
1J2 3J4 
      <[1]2 2⍴⍳4
1J3 2J4 
      >⎕←<2 2⍴⍳4
1 2
3 4
      >⎕←<[1]2 2⍴⍳4
1J3 2J4 
1 3
2 4
      >[1]⎕←<[1]2 2⍴⍳4
1J3 2J4 
1 2
3 4

Change definition of ⎕CS to sort numbers before letters

This niladic function is a four-dimensional character array useful when
sorting characters.  The four dimensions are

• 10 for digits

• 6 for accented character sets

• 2 for upper/lower case

• 27 for the alphabets plus one for a separate column of digits

For example,

      ⍴⎕CS
10 6 2 27
      ⎕CS[;1;2;1]
0123456789
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      ⎕CS[1;;1;]
 abcdefghijklmnopqrstuvwxyz
 ábćdéfg�híjk�ĺm�ńóp�qŕśtúvw�xýź
 àbcdèfghìjklmn�òpqrstùvw�xy�z
 âbĉdêfĝĥîĵklmnôpqrstuvwxyz
 äbcdëfg ïjklmnöpqrs üv ÿzḧ ẗ ẅẍ
 ãbcde¡fghĩjklmñõpqrstũv¡wxy¡z

This change moves the digits from the end of the alphabets (column 
27) to the beginning (column 1).

Allow '∇' as argument to ⎕AT, ⎕CR, ⎕STOP, ⎕TRACE, ⎕VR

Inside a function (Anonymous or User-defined), you may use the 
character '∇' as an argument to the above System Functions to refer
to the current active function without having to name it.

Allow ∘. As A Monadic Operator Including f←∘.

This change comes with Hyperators so as to allow it to be used as a 
Hyperand.

For example,

      f←∘.
      ⌊f⍨⍳4
1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

Allow Scalar Right Arguments With Partitioned Enclose

For some reason I cannot justify, this used to produce an error, 
although the same scalar reshaped to a one-element vector worked 
just fine.

Before this change, this means that a solution to (say) the current APL
Problem Solving Competition Phase I Problem 1 such as
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      fn←{(+\(≢⍵)⍴⍺↑1)⊂⍵} 

fails on 4 fn 5 using the old definition (but works on 4 fn,5) and 
needs to be written as

      fn←{(+\(≢⍵)⍴⍺↑1)⊂1/⍵} 

in order to handle the scalar Right Argument case.  By supporting this 
case, the solution is simpler at no appreciable cost.

APL2 and Dyalog APL both signal an error.

Implement 4 ⎕DR to Extract Numerators and Denominators

This feature separates out the numerator and denominator of a 
Multiple-Precision Rational Number.  I’m quite surprised that I haven’t 
needed this feature before now.

For example,

      ⎕←a←3 3⍴(⍳9)÷2x
1r2   1 3r2
  2 5r2   3
7r2   4 9r2
      4 ⎕DR a
1 1 3
2 5 3
7 4 9

2 1 2
1 2 1
2 1 2|
      a≡÷⌿4 ⎕DR a
1
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Implement UTF-8/-16/-32 In Dyadic ⎕UCS

UTF-8 is pretty handy as in

      ,'%',¯2↑[2] ⎕←2 ⎕DR ⎕←'UTF-8' ⎕UCS '⎕'
226 142 149
00000000000000E2
000000000000008E
0000000000000095 
%E2%8E%95

when I needed to include a '⎕' in the text of a link such as

When To Use CT With Rationals⎕ .

which translates the name part to

When%20To%20Use%20%E2%8E%95CT%20With%20Rationals.pdf

Promote Large Factorials From Error To RAT

For example, it used to be the case that !171 signalled an error 
because that was outside the limits of the GSL floating point library.  
Now it displays all 310 digits as a Multiple-Precision Integer/Rational 
number.

Remove Support For The Uppercase Underbar Latin Alphabet

Say goodbye.

Implement Variant For Grade Functions To Grade All Arrays

I know that Dyalog has defined the Grade primitives on all arrays, I 
just haven’t had the chance to do the same.  In the meantime, this 
uses an old definition of Grade on all arrays via ⍋⍠'a' R.

Allow Negative Sign In BasePoint

I have no idea why I missed this, but here it is:

      16b¯1FF
¯511
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Define Identity Elements For Left/Right Tack Functions

For some reason, I thought this hole needed to be filled:

      ⊢/⍬
0
      ⊣/⍬
0

Demote dimension of Complex arrays of Eigenvalues, 
Eigenvectors, and Schur vectors

The expression ⌹⍠n M for a Matrix M and n∊1 2 3 4 produces an 
array of  Eigenvalues, Eigenvectors, and/or Schur vectors all 
important concepts in Linear Algebra.  This implementation is 
somewhat hindered by the fact that some of the libraries I’m using 
take input of Real arrays, not Complex arrays.  If the Complex arrays 
have tiny Imaginary parts, they can be demoted to Real arrays, and 
that’s what this change accomplishes.

I really need to write my own routines for Eigenvalues/vectors which 
would also have the very much needed side effect of allowing me to 
provide support for these concepts represented as Multiple-Precision 
FP and Ball Arithmetic.

Allow Accented Chars In ⎕EX, )ERASE, etc.

More of a bug fix than a feature.

Current & Future Work
Some of these ideas are leftover from the last time!

Java Support

Working with Dave Rabenhorst, we have spent considerable time 
creating a bridge between APL and the Java language where now we 
can call arbitrary Java code from APL.  As a part of this interface, 
Dave has created a matching Session Manager with the capabilities of
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the original Session Manager along with many extras.

Some of the features of the new SM include:

• distinguish different kinds of output with configurable color and 
style

• display numbers in colors to distinguish their sign, magnitude, 
and angle

• define any key to any glyph or string or action or combination

• define any function key to one or more immediate or delayed 
actions

• define any mouse click to an action

• hundreds of shift combinations are configurable for keys and 
clicks

• use a complementary configurable editor with enhanced new 
features 

• nine different help windows are available any time 

• direct calls from APL to functions in Java classes can arranged 
with the name association system function.

• over a dozen new built-in tools written in Java

Implement Inverses

The Power operator isn’t the same without Inverses.  This feature will 
also open up implementing the Dual and Commutator operators as 
well as Numerical Integration.

MP Floats: Set Precision As Lexical, Not Tokenized

This very subtle issue has caused me considerable pain when I was 
trying to track down a bug caused by it that appears at first to be far 
removed.  The question revolves around the simple statements

      ⎕FPC←128
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      ⎕FPC←256 ⋄ A←1.2v
      3 ⎕DR A
128

As you can see, the actual precision of A is not the expected value of 
256.  The problem is that the precision of constants is a property you 
think is set at execution time, but is actually set at Tokenization time.

Finish Support for Matrix Operator and Eigenvalues/Eigenvectors

The current implementation is incomplete in that it doesn’t handle non-
diagonalizable matrices.  Such matrices can be resolved using Jordan
Canonical Form along with successive order derivatives of the 
function operand on the Eigenvalues.

However, now that I have a reliable and accurate Numerical 
Differentiation operator that works on all numeric datatypes, this goal 
is much closer.

Online Version
This paper is an ongoing effort and can be out-of-date the next day. To
find the most recent version, go to http://sudleyplace.com/APL/ and
look for the title of this paper on that page. 
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