
Progress In NARS2000
October 2015 to September 2017

Bob Smith
Sudley Place Software

Originally Written
11 Jul 2017

Updated
10 Sep 2017

Released Features

Language Features

Hypercomplex Numbers

Complex, Quaternion, and Octonion numbers are now supported with
their 2-, 4-, or 8-dimensional coefficients represented in one of four
ways as:

● all fixed-precision 64-bit integers,
● all fixed-precision 64-bit floating point numbers,
● all multiple-precision integer/rational numbers, or
● all multiple-precision floating point numbers.

All primitive functions and operators are sensitive to Hypercomplex
Numbers with the exception of the Shriek functions. These functions
return results on Real, Complex, and Quaternion Fixed-Precision
numbers and Real Multiple-Precision numbers only; otherwise, they
signal a DOMAIN ERROR on all types of Octonions and a NONCE ERROR
on Complex and Quaternion Multiple-Precision numbers.

-1-

Extending these functions to the remaining datatypes requires
calculating the Complex-valued Eigenvalues and Eigenvectors of
certain 2×2 or 4×4 Real non-symmetric matrices which in turn requires
writing my own Multiple-Precision routines for calculating Eigenvalues
and Eigenvectors.

Quaternion and Octonion numbers introduce their own set of challenges
because multiplication is non-commutative (where L×R ←/→ R×L).
This failed property affects the definition of not just multiplication but
several others, and caused me to introduce a new system variable ⎕DQ
(Division Quotient – Left or Right) to control how division is done. In
particular, there are two ways to interpret L÷R. An additional challenge
for Octonions is that multiplication is not associative.

For more details, see “Hypercomplex Numbers in APL”12,
"Hypercomplex GCD in APL13", "Hypercomplex Quotients in APL"14.,
"Hypercomplex Notation in APL"15, and "Hypercomplex Implementation
in APL"16.

Implement Dilate and Condense

One way to manage the coefficients of Hypercomplex numbers uses the
left and right carets as monadic functions. The Condense function (<R)
takes an array whose number of columns is 1, 2, 4, or 8 and creates a
new array whose shape is ¯1↓⍴R and whose last coordinate is filled
with Hypercomplex numbers of the appropriate dimension. For
example,

 <2 4⍴⍳8
1i2j3k4 5i6j7k8

The Dilate function (>R) reverses the effect of the Condense function
and creates a new array whose shape is (⍴R),=R, where =R returns an
integer scalar of the Hypercomplex dimension (1, 2, 4, or 8) of R:

-2-

 ><2 4⍴⍳8
1 2 3 4
5 6 7 8

This feature was suggested by David A. Rabenhorst.

Implement Preliminary Support For NaNs

A NaN (Not-a Number) is a concept found in the IEEE-754 Standard for
Binary Floating Point Arithmetic, among other places. It is meant to
represent a state where there is no number that can adequately
represent the result of a calculation (e.g., 0×∞, 1○∞, etc.).It can also be
used as a fill for a missing or unknown value. For the most part, a NaN
as an argument to a primitive function/operator either returns another
NaN or signals an error. The exceptions are A=B and A≠B where NaNs
compare equally with themselves. The idea is that NaNs propagate
throughout a calculation to the end so you know something was missing
or unknown.

An interesting example of NaNs is 0*0J1. You might be tempted to
reason that because it's not 0*0, the answer must be 0. That's true for
Real but not Complex exponents. One way to understand this is to use
the folllowing identity which expresses the Power function using simpler
functions:

L*R ←→ *R ×⍟L
0*0J1 ←→ *0J1×⍟0

If you don't support infinities, then ⍟0 is a DOMAIN ERROR and that's the
answer. On the other hand, if your system says ⍟0 ←→ ¯∞, we get

0*0J1 ←→ *0J1×¯∞

Applying Euler's formula *0J1×N ←→ (2○N)+0J1×1○N, involves
calculating 2○¯∞ and 1○¯∞, both of which are bona fide DOMAIN

-3-

ERRORs – if you don't suport NaNs, that's the answer. However, the
IEEE-754 Standard calls both of those expressions a NaN (the symbol
for which is ∅, U+2205), and so the correct answer is

0*0J1 ←→ J∅ ∅

This feature was suggested by David A. Rabenhorst.

At the moment, support for this feature is incomplete and experimental.

Implement Combinatorial Operator

This clever idea originated with the late mathematician Gian-Carlo Rota
who conceived of “The Twelvefold Way”4 in a series of lectures at MIT in
the 1980s. It consolidates twelve common Combinatorial Algorithms
into one 2×2×3 array all within the unifying concept of Distributing
balls into boxes, subject to a Capacity choice. The three dimensions of
the array may be described as follows:

● The Balls may be labeled or not {2 ways}
● The Boxes may be labeled or not {2 ways}
● The Capacity of Balls per Box may be one of At Most One |

Unrestricted | At Least One {3 ways}

Amazingly, it turns out that if you look closely at all twelve possibilities,
each one corresponds to a Combinatorial Algorithm. That is, this very
APL-like idea encompasses the Combinatorial Algorithms of
Permutations, Combinations, Partitions of a Number, Partitions of a Set,
Multisets, and Tuples.

All the user needs to do is specify

● a three-digit Function Selector which chooses the Combinatorial
Algorithm

-4-

● an optional Boolean value to choose whether you want to
enumerate (0 = default) or generate (1) the values

● the # balls and boxes

For example, to count or generate Combinations, use a Function
Selector of 010

 2!5 ⍝ The original way to enumerate values
10
 10‼2 5 ⍝ Another way ≡ 10 0‼2 5
10
 10 1‼2 5 ⍝ Generate values as 10×2 array
1 2
1 3
2 3
1 4
2 4
3 4
1 5
2 5
3 5
4 5

One of the great benefits of this design is that because the programmer
simply selects which Combinatorial Algorithm to invoke, she doesn’t
need to program the fastest corresponding algorithm in APL as there is
already a high-quality implementation written in a low-level language
backing up her choice. In particular, I found all of the non-trivial
Combinatorial Algorithms I needed in D. E. Knuth’s TAoCP, Vol 4A,
“Combinatorial Algorithms”10, all of which were easily translated to C.

For more details, see “A Combinatorial Operator in APL”17.

-5-

Grade on Nested and Heterogeneous Arrays

 ⍋(1 2) (1 1) (1 3) (¯1 0)
4 2 1 3
 ⍋1 'a' 0 '.'
3 1 4 2

where arrays are ordered by Rank, Shape, and Value, etc.

Set Function Fix Time

When the left argument to ⎕FX is a valid seven-element integer vector
timestamp, that timestamp is used as the function’s fix time. This way,
functions stored external to the workspace can be restored to the
workspace with their original timestamp. The interpretation of the
timestamp is subject to the User Preference of “Use local time
(instead of UTC)”.

This feature was suggested by David A. Rabenhorst.

Precision Specifier For VFP Constants

A number after the VFP suffix may be used to specify the precision of
the constant such as 1.1v64. This feature should to be considered
experimental and may be deprecated in the future.

This feature was suggested by David A. Rabenhorst.

Get A Variable’s Precision

When the left argument to ⎕DR is the value 3, the result is a simple
numeric scalar with the right argument’s numeric precision:

 3 ⎕DR 0 1
1
 3 ⎕DR ⍳3
64

-6-

 3 ⎕DR ÷2 3
64
 3 ⎕DR ÷2 3x
∞
 3 ⎕DR 2.3v ⍝ Returns the value of ⎕FPC when the

 ⍝ constant was tokenized
128
 3 ⎕DR 1v64
64
 3 ⎕DR 'a' ⍝ Character width in bits
16
 3 ⎕DR 'a' 1
0
 3 ⎕DR ⊂1 2
0

System Function To Retrieve Native File Information

The system function ⎕NINFO is modeled after the function of the same
name as defined by Dyalog, where the left argument lists zero or more
categories of results such as

0: File Name
1: File Type
2: File Size
3: File Timestamp
4: Owner Security ID
5: Owner Name
6: Boolean Hidden State
7: Symbolic Link

For more details, see the NARS2000 Wiki entry11 for ⎕NINFO.

-7-

Variant Operator Extensions

Syntax Right Operand
Values

Localized Meaning

L(×⍠C)R ‘i’ (Interior Product)
‘e’ (Exterior Product)

(L R+.×R L)÷2
(L R-.×R L)÷2

(⍎⍠N)R Numeric scalar ⎕FPC←N

L(|⍠C)R
L(÷⍠C)R
L(∨⍠C)R
L(∧⍠C)R
L(○⍠C)R
L(⊤⍠C)R

‘l’ (Left quotient)
‘r’ (Right Quotient)

⎕DQ←C

(!⍠N)R

(!⍠N1 N2)R

Numeric scalar

Numeric vector

Rising/Falling factorial length N
step 1 (see below)
Rising/Falling factorial length N1
step N2 (see below)

(⌹⍠N)R 1
2
3
4

Return vector of Eigenvalues
Return matrix of Eigenvectors
Return nested array of both
Return nested array of both (see
below) along with a Real matrix
of the Schur vectors, one per
column

(∘⌻⍠C)R ‘l’ (Left matrix rep)
‘r’ (Right matrix rep)
for Octonion scalars

⎕DQ←C

Rising/Falling Factorial

Pochhammer k-Symbol (Rising and Falling Factorials)1 implemented
through the Variant operator whose left and right operands are the

-8-

Shriek function and a signed integer scalar or one- or two-element
integer vector. For example:

Rising Factorial, Default Step

 (!⍠3)10
1320
 ×/10 11 12
1320

Rising Factorial, Explicit Step

 (!⍠3 2)10
1680
 ×/10 12 14
1680

Falling Factorial, Default Step

 (!⍠¯3)10
720
 ×/10 9 8
720

Falling Factorial, Explicit Step

 (!⍠¯3 2)10
480
 ×/10 8 6
480

Eigenvalues and Eigenvectors

These concepts5 from Linear Algebra and Matrix Theory define the
characteristic values and vectors of the linear transformation
represented by a matrix. Every square simple Real numeric matrix has
Eigenvalues and Eigenvectors. To calculate these objects, use the
Variant operator with a left operand of the Domino function and a right
operand of an integer scalar.

-9-

Z←(⌹⍠1) R Z is a Complex floating point vector of the Eigenvalues

Z←(⌹⍠2) R Z is a Complex floating point matrix of the Eigenvectors
one per column

Z←(⌹⍠3) R Z is a two-element nested vector with a Complex
floating point vector of the Eigenvalues in the first
element and a Complex floating point matrix of the
Eigenvectors in the second

Z←(⌹⍠4) R Z is a three-element nested vector with a Complex
floating point vector of the Eigenvalues in the first
element, a Complex floating point matrix of the
Eigenvectors in the second, and a Real matrix of the
Schur vectors one per column in the third

For more details, see “A Matrix Operator in APL”6.

A Matrix Operator

Normally in APL, when applying a scalar function to a matrix, the matrix
is viewed as a container of its scalar elements and the scalar function
applies to the individual elements. Matrix functions are different – in this
case, the scalar function applies to the matrix as a whole8, that is they
treat the matrix as a new datatype. This concept is identical to that of
the Multiset7 operator where functions such as IndexOf (L⍳⍦R) and
MemberOf (L∊⍦R) take on new meaning in that their arguments are
treated as a new datatype, that is, sets with repeated elements where
the repetitions play an integral role when calculating the result.
Similarly, the Transpose, Matrix Inverse, and Matrix Divide functions and
Inner Product and Determinant operators all apply to the matrix as a
whole.

In the same manner, the (monadic) Matrix operator applies its (scalar
function) operand to its matrix (right) argument as a new datatype to

-10-

which the function (left operand) is applied. Not all scalar functions
have been extended to matrices, but a large number have and are in
use in various scientific fields. For the nonce, this operator applies its
function operand to diagonalizable9 fixed-precision Real matrices
only.

For more details, see “A Matrix Operator in APL”6.

Extend Expand Function to Signed Integer Left Arguments

The Expand function has been extended to accept signed integer left
arguments as per the original NARS implementation. If a negative
value occurs in the left argument, the fill item of the right argument is
selected for the result; if a positive values occurs in the left argument,
an item is selected from the right argument. The magnitude of the
values in the left argument indicates the number of times the selected
item is repeated in the result, except that 0 has the same effect as ¯1.

For example,

 1 1 2 1 1 ¯1 1 1 1\'BUTERFLY'
BUTTER FLY

This function is equivalent to the following:

 ∇ Z←L #DydSlope[X] R
[1] Z←(1⌈|L)/[X] (L>0)\[X] R
 ∇

Session Manager

Line Continuations

This feature is available in both the Session Manager and the

-11-

Function Editor where it allows you to deal with long lines by breaking
them into several shorter physical lines which are then treated as one
logical line. For example:

 f←{
➥⍺ ⍝ Left arg
➥+ ⍝ Function
➥⍵ ⍝ Right arg
➥}
 3 f 5
8
 h←{s←(+/⍵)÷2
➥ ⋄ √×/s-0,⍵ ⍝ Formula for triangle area
➥}
 h 3 4 5
6

The Line Continuation Marker ('➥' — U+27A5) is entered by pressing
Shift-Enter.

In the Function Editor, this feature is most useful as a way to organize
an unruly function header as well as to create a multi-line Anonymous
Function/Operator (AFO).

Editing A User-Defined Function/Operator

Given the following function header

[0] Z←{L1 L2} (LO DOP RO) R;⎕CT;⎕RL;B1;B5;LCL;
GLB;SGL;MUL;LSTACK;LSTACKLEN;RSTACK;RSTACKLEN;⎕IO

it can be rewritten using Line Continuations as several short lines

-12-

[0] Z←{L1 L2} (LO DOP RO)R;⎕CT ⎕RL
 ➥ B1 B5
 ➥ LCL GLB SGL MUL
 ➥ LSTACK LSTACKLEN
 ➥ RSTACK RSTACKLEN
 ➥ ⎕IO

which can then be further organized into groups of related local
variables along with trailing comments, as opposed to the typical
practice of the function header as a disorganized unordered pile onto
which names are tossed.

[0] Z←{L1 L2} (LO DOP RO)R;
 ➥ ⎕CT ⎕RL ⎕IO ⍝ Sys Vars
 ➥ B1 B5 ⍝ Limits
 ➥ LCL GLB SGL MUL ⍝ Prefixes
 ➥ LSTACK LSTACKLEN ⍝ Stack vars
 ➥ RSTACK RSTACKLEN ⍝ ...

Editing An AFO

If the object being edited is an AFO, then Shift-Enter may be used (as
above) to create additional physical but not logical lines, and Enter may
be used to create additional both physical and logical lines.

For example, type

 h←{s←(+/⍵)÷2 ⋄ √×/s-0,⍵}

and then edit this function via ∇h or)EDIT h or double-clicking the
name h to display a function editor window containing

[0] h
[1] s←(+/⍵)÷2 ⋄ √×/s-0,⍵

This function may be edited further by deleting the diamond separator
and pressing Enter at that point so as to split the line in two, resulting in

-13-

[0] h
[1] s←(+/⍵)÷2
[2] √×/s-0,⍵ ⍝ Formula for triangle area

The Enter key is used to create a multi-physical-line AFO, whereas
Shift-Enter creates a multi-logical-line AFO. The two types may
appear together in a single AFO.

Note that when editing an AFO in this way, the function header line may
not be changed.

System Labels In AFOs

Moreover, this method of editing an AFO also allows you to define
additional entry points such as for an identity, prototype, or multiset
function via the System Labels ⎕ID, ⎕PRO, ⎕MS, respectively. When
system labels are used, they must appear at the start of a logical line.
For example, the above function h could be edited to include an identity
function entry point as follows:

[0] h
[1] s←(+/⍵)÷2
[2] √×/s-0,⍵ ⍝ Formula for triangle area
[3] ⎕ID:0

which allows the function to be used where an identity function is
required such as

 h/⍬
0

Similarly

 f←{⍺+÷⍵}

requires an identity element when used in scan, as in

-14-

 f\10⍴1
DOMAIN ERROR

Because ∞ is the identity element for the function f, when it is edited to
include the entry point ⎕ID:∞, the above line produces the expected
result now that ∞≡f/⍬:

 f\10⍴1
1 2 1.5 1.6667 1.6 1.625 1.6154 1.619 1.6176 1.6182

Output Debugging

Sometimes displayed output may appear oddly spaced. This may be
due to several reasons one of which is the presence of non-printing
ASCII Control Characters (whose character code is in the range 0x00 to
0x1F, excluding CR and LF). To better understand that case, you may
turn on Output Debugging through the menu items Edit | Customize...
| User Preferences. When enabled, this feature changes the way in
which the above non-printing characters are displayed – instead of the
normal behavior of ignoring the character, those characters are
displayed using a special font which displays each character with its
four digit hex code inside a box. For example,

 32⍴⎕AV
!"#$%&'()*+,
./0123456789:;<=>?

For ease in visually recognizing non-printing ASCII Control Characters,
they are displayed in their own Syntax Color.

Accented Characters

Many international alphabets use diacritical marks as accent symbols
on the letters such as á à â ä ã to name but a few such accents.
NARS2000 now supports the five most common Latin-based accents:

-15-

Acute, Grave, Circumflex, Dieresis, and Tilde for all applicable letters.
These new characters may be used anywhere the usual a-z and A-Z
characters are used. For example,

ábćdéfǵhíjḱĺḿńóṕqŕśtúvẃxýź ÁBĆDÉFǴHÍJḰĹḾŃÓṔQŔŚTÚVẂXÝŹ
àbcdèfghìjklmǹòpqrstùvẁxỳz ÀBCDÈFGHÌJKLMǸÒPQRSTÙVẀXỲZ
âbĉdêfĝĥîĵklmnôpqrstuvwxyz ÂBĈDÊFĜĤÎĴKLMNÔPQRŜTÛVŴXŶẐ
äbcdëfgḧïjklmnöpqrsẗüvẅẍÿz ÄBCDËFGḦÏJKLMNÖPQRSTÜVẄẌŸZ
ãbcdẽfghĩjklmñõpqrstũṽwxỹz ÃBCDẼFGHĨJKLMÑÕPQRSTŨṼWXỸZ

Entering Accented Characters

Different keyboards provide different ways in which to enter these
accented characters. Nearly every keyboard layout that supports
accented characters provides one or more dead keys. These keys (e.g.
a Dieresis (¨)), when pressed (sometimes in conjunction with a modifier
key such as Shift, Alt, or AltGR) do not display a character immediately,
but wait for the next keystroke (the base character) to complete the
process. If (say) the next key is a capital U, then the key displayed is Ü.
Many of the accented characters in the above list can be entered in this
way.

If the base character does not have an accented form, the system
produces two symbols: the accent and the base character. This feature
can be used to produce the accent character alone by use a space as
the base character.

Global Dead keys

However, not all of the above accented characters are supported on
keyboards in combination with their software drivers. To aid in entering
all of the above accented letters, NARS2000 supports Global Dead
Keys through its software drivers. For all of the NARS2000 built-in
keyboard layouts (e.g., Danish, French, German, UK, and US), certain
keystrokes have been reserved as Dead Keys. The built-in keyboard
layouts are divided into two classes: those that use the Alt key to enter

-16-

https://en.wikipedia.org/wiki/Dead_key

APL characters and those that use the Ctl key. For those layouts in the
former class, the reserved keystrokes are Ctl-Shift- in combination with
the letters a c d g t; the layouts in the latter class reserve Alt-Shift-a c d
g t. The letters a c d g t correspond to the first letter of the accent:
Acute, Circumflex, Dieresis, Grave, and Tilde. These choices may be
overridden in case you need those keystrokes for your own purpose.

For example, to enter the letters ĵ or Ĵ on an Alt-type keyboard layout,
press Ctl-Shift-c (for Circumflex), release those keys and then press
either j to display ĵ or J to display Ĵ.

APL System Functions

From within APL, you have access to all of the above Latin alphabets
through the niladic system functions ⎕á ⎕à ⎕â ⎕ä ⎕ã for the
lowercase Latin alphabets and ⎕Á ⎕À ⎕Â ⎕Ä ⎕Ã for the uppercase
Latin alphabets. Also, ⎕a and ⎕A return the unaccented Latin
alphabets. For example,

 ⍪⎕a ⎕á ⎕à ⎕â ⎕ä ⎕ã
 abcdefghijklmnopqrstuvwxyz
 ábćdéf híj ĺ ńó qŕśtúv xýź ǵ ḱ ḿ ṕ ẃ
 àbcdèfghìjklm òpqrstùv x z ǹ ẁ ỳ
 âbĉdêfĝĥîĵklmnôpqrstuvwxyz
 äbcdëfg ïjklmnöpqrs üv ÿz ḧ ẗ ẅẍ
 ãbcd fghĩjklmñõpqrstũ wx zẽ ṽ ỹ
 ⍪⎕A ⎕Á ⎕À ⎕Â ⎕Ä ⎕Ã
 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 ÁBĆDÉF HÍJ Ĺ ŃÓ QŔŚTÚV XÝŹ Ǵ Ḱ Ḿ Ṕ Ẃ
 ÀBCDÈFGHÌJKLM ÒPQRSTÙV X Z Ǹ Ẁ Ỳ
 ÂBĈDÊFĜĤÎĴKLMNÔPQRŜTÛVŴXŶ Ẑ
 ÄBCDËFG ÏJKLMNÖPQRSTÜV ŸZ Ḧ ẄẌ
 ÃBCD FGHĨJKLMÑÕPQRSTŨ WX Z Ẽ Ṽ Ỹ

Also, the niladic system function ⎕CS returns a character array of shape
10 6 2 28 which as the left argument to the Grade functions can act

-17-

as a Collating Sequence (or the starting point for your own version of a
Collating Sequence) when you need to sort character arrays containing
any of the above accented characters.

Drag and Move vs. Drag and Copy

In both the function and session editors, the mouse may Drag and
Move or Drag and Copy a selection to another location in the same
window. The former is equivalent to Cut and Paste, while the latter is
equivalent to Copy and Paste, both in a single atomic operation.

After selecting the text (which may span multiple lines), release the left
mouse button. Then move the mouse back to any point within the
selected text, press and hold the left mouse button and Move/Copy the
text to its new location. Release the left mouse button at the
appropriate insertion point.

During the Move/Copy, the text caret shows exactly the position of the
insertion point. and the mouse cursor indicates whether or not the Ctrl-
key is pressed. When the left mouse button is released, if the Ctrl-key
also is pressed, then the operation becomes Drag and Copy which
Copies the selected text (without Cutting it) and Pastes it at the insertion
point.

The Undo key (Ctrl-Z) restores all of the Cut/Copy/Pasted text to its
previous state.

Implementation Features
Elided indices as in A[I;;J;] use a temporary APV instead of special
treatment throughout indexing. That is the above expression is roughly
equivalent to writing A[I;⍳(⍴A)[2];J;⍳(⍴A)[4]]. Use of this
technique netted about 150 fewer lines of source code (200 of special
handling of elided indices less 50 extra lines for the temporary APV).

-18-

Miscellaneous Features
● New System Command)FOPS to list both)FNS and)OPS
● Command line arguments for the executable to set Symbol and

Hash Table sizes on startup
● New System Command)SYMB to display the sizes of the internal

Symbol and Hash Tables. Eventually this command will be
extended to set new sizes for those tables

● Two alternate Hypercomplex notations suggested by David A.
Rabenhorst:

 Unit Normal Radian Point Notation for Complex numbers as in
1au0.25 = 1ad90 where the 0.25 represents a quarter turn,
i.e. 90°, counter-clockwise

 Digraphs for Octonion numbers to make the notation more
regular by using one-letter separators for Complex and
Quaternion numbers and two-letter separators for Octonions as
in 1i2j3k4os5oi6oj7ok8

● Optimize Nth prime search (¯2πN) for N < 1E5
● Optimize Nth prime count (2πN) for N < 1298174
● Implement niladic system function ⎕SI to return the contents of the

State Indicator
● Support decimal points in base Point Notation such that
16bff.f ←→ 255.9375
2b101.01 ←→ 5.25

Current & Future Work

Extend Iverson’s Determinant Operator2

While implementing in APL a special case of this operator (+.×M) known
as the Permanent of a Matrix3 by H.J. Ryser, I found that Ryser’s
algorithm when applied to under-determined matrices (i.e., </⍴M)

-19-

returned results different from Iverson’s. Eventually, I traced the
difference to the fact that Iverson had defined the determinant of that
case to be identical to the determinant of the square matrix obtained by
truncating trailing columns of the original matrix, i.e., (2⍴1⍴M)↑M – in
contrast, the values in those truncated columns are significant in
Ryser’s algorithm.

This leads me to conjecture that the determinant operator could extend
to all under-determined cases for all operands.

MP Floats: Set Precision As Lexical, Not Tokenized
This very subtle issue has caused me considerable pain when I was
trying to track down a bug caused by it that appears at first to be far
removed. The question revolves around the simple statements

 ⎕FPC←128
 ⎕FPC←256 ⋄ A←1.2v
 3 ⎕DR A
128

As you can see, the actual precision of A is not the expected value of
256. I’m willing to bet that every APL implementor here whose
implementation contains a tokenization phase would code it the way I
first did and regret it later. The problem is that the precision of
constants is a property you think is set at Lexical time, but is actually set
at Tokenization time.

Finish Support for Matrix Operator
The current implementation is incomplete in that it doesn’t handle non-
diagonalizable matrices. Such matrices can be resolved using Jordan
Canonical Form along with successive order derivatives of the function
operand on the Eigenvalues.

-20-

Implement Derivative Operator
While working on the Matrix operator, I’ve found the Derivative operator
very useful. My first step is to look at what J has done, but in the
meantime, a very naive version of this operator can be defined as
follows:

 ∆←{⍺←1E¯40x ⋄ ((⍺⍺ ⍵+⍺)-⍺⍺ ⍵)÷⍺}

For example,

 !∆ 0
¯0.5772156649015328606065120900824024310421
 ¯1g1x
¯0.5772156649015328606065120900824024310422

That is, the first derivative of the Factorial function at 0 is -, where  is
the Euler-Mascheroni constant.

Finish Support for NaNs
The current implementation is incomplete and inconsistent in a few
places.

Support User Commands
This excellent idea from APL-Win and later enhanced by Dyalog is
sorely missing from NARS2000.

Integrate GnuPlot
Now that NARS2000 supports Quaternions, they are the perfect tool to
rotate, scale, and translate multi-dimensional objects.

-21-

Support Function Keys
In a previous product (for DOS) which involved allowing the user to edit
the screen, I had implemented a simple language which the user could
personalize for the function keys and other special keys. Something like
this is needed again.

Extend Syntax Coloring To Show Input v. Output
Perhaps by using a background color or a leading line marker?

Access to External Processes
What with Hypercomplex numbers available, there is a greater need to
show them off, such as plotting as they rotate a multi-dimensional
figure. This is a job for Shared Variables and Name Association and
possibly a system function or two.

Online Version
This paper is an ongoing effort and can be out-of-date the next day. To
find the most recent version, go to http://sudleyplace.com/APL/ and
look for the title of this paper on that page.

References
1. Kenneth E. Iverson (August 2006), "APL in the New

Millennium", Vector, 22 (3), archive.vector.org.uk/art10004040
2. Kenneth E. Iverson, “Determinant-Like Functions Produced by the

Dot Operator”, SATN-42 (Sharp APL Technical Notes), 1982-04-01,
www.jsoftware.com/papers/satn42.htm

-22-

http://www.jsoftware.com/papers/satn42.htm
http://archive.vector.org.uk/art10004040

3. Wikipedia, “Computing the Permanent”,
en.wikipedia.org/wiki/Computing_the_permanent#Ryser_formula

4. Wikipedia, “TwelveFold Way”,
en.wikipedia.org/wiki/Twelvefold_way

5. Wikipedia, “Eigenvalues and Eigenvectors”,
en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

6. Smith, Bob, “A Matrix Operator in APL”, www.sudleyplace.com/APL/A
Matrix Operator In APL.pdf

7. “Multisets”, wiki.nars2000.org/index.php/Multisets
8. Wikipedia, “Matrix Function”, en.wikipedia.org/wiki/Matrix_function
9. Wikipedia, “Diagonalizable Matrix”,

en.wikipedia.org/wiki/Diagonalizable_matrix
10. Knuth, Donald E., “The Art of Computer Programming”, Addison

Wesley, Volume 4A, Combinatorial Algorithms, p. 390, ISBN 0-201-
89685-0

11. NARS2000 Wiki: ⎕NINFO
wiki.nars2000.org/index.php/System_Function_NINFO#.E2.8E.95NIN
FO

12. Smith, Bob, “Hypercomplex Numbers in APL”
www.sudleyplace.com/APL/HyperComplex Numbers in APL.pdf

13. Smith, Bob, "Hypercomplex GCD in APL",
www.sudleyplace.com/APL/Hypercomplex GCD in APL.pdf

14. Smith, Bob, "Hypercomplex Quotients in APL",
www.sudleyplace.com/APL/Hypercomplex Quotients in APL.pdf

15. Smith, Bob, "Hypercomplex Notation in APL",
www.sudleyplace.com/APL/Hypercomplex Notation in APL.pdf

16. Smith, Bob, "Hypercomplex Implementation in APL",
www.sudleyplace.com/APL/Hypercomplex Implementation in APL.pdf

17. Smith, Bob, "A Combinatorial Operator in APL",
www.sudleyplace.com/APL/A Combinatorial Operator in APL.pdf

-23-

http://www.sudleyplace.com/APL/A%20Combinatorial%20Operator%20in%20APL.pdf
http://www.sudleyplace.com/APL/Hypercomplex%20Implementation%20in%20APL.pdf
http://www.sudleyplace.com/APL/Hypercomplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/Hypercomplex%20Quotients%20in%20APL.pdf
http://www.sudleyplace.com/APL/Hypercomplex
http://www.sudleyplace.com/APL/Hypercomplex%20GCD%20in%20APL.pdf
http://www.sudleyplace.com/APL/Hypercomplex
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://wiki.nars2000.org/index.php/System_Function_NINFO#.E2.8E.95NINFO
http://wiki.nars2000.org/index.php/System_Function_NINFO#.E2.8E.95NINFO
https://en.wikipedia.org/wiki/Diagonalizable_matrix
https://en.wikipedia.org/wiki/Matrix_function
http://wiki.nars2000.org/index.php/Multisets
http://www.sudleyplace.com/APL/A%20Matrix%20Operator%20In%20APL.pdf
http://www.sudleyplace.com/APL/A%20Matrix%20Operator%20In%20APL.pdf
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Twelvefold_way
https://en.wikipedia.org/wiki/Computing_the_permanent#Ryser_formula

