
Progress In NARS2000
October 2013 to September 2015

Bob Smith
Sudley Place Software

Originally Written
14 Sep 2015

Updated
23 Sep 2015

Released Features

Hypercomplex Numbers

By hypercomplex, I mean Complex (ℂ), Quaternion (ℍ), and Octonion 
(��) (CHO) numbers, which together round out the set of a particular 
kind of algebraic structures (normed division algebras) starting with the 

Real (ℝ) numbers.  A CHO number has, respectively, 2-, 4-, or 8-
coefficients which as a set may all be of one data type, to wit

 Fixed precision (64-bit) integers,
 Fixed precision (64-bit) floating point numbers,
 Multiple precision integer/rational numbers, or
 Multiple precision floating point numbers.

The end result is to add twelve new datatypes to APL bringing the total 
number of datatypes to 21.  Not surprisingly, this was a major effort over
three solid months.

At the moment, I'm not quite ready to release this feature, but it is 
available in alpha version from my website:  
http://nars2000.org/download/binaries/alpha/.  By alpha version, I mean 

-1-

http://www.nars2000.org/download/binaries/alpha/


that (modulo bugs), all still unsupported features should signal a NONCE
ERROR or a DOMAIN ERROR – if it doesn't, that's a bug.

More on Hypercomplex numbers and their implementation in a later talk.

Grammars

Point Notation Grammar

The forms of constants in NARS2000 are many and varied.

 Fixed precision integer (1234)

 Fixed precision decimal/exponential floating point (1.2E¯34)

 Multiple precision integer/rational (12x or 12r34)

 Multiple precision floating point (1.2v or 1.2E¯34v)

 CHO fixed precision integer (2i3)

 CHO fixed precision floating point (1.2i3.4j5)

 CHO multiple precision integer/rational (1r2i3r4j5x)

 CHO multiple precision floating point (1.2i3.4j5v)

 Euler point (2x3 ←→ 2×(*1)*3)

 Pi point (2p3 ←→ 2×(○1)*3)

 Base point (16b01FF ←→ 16⊥0 1 15 15)

The entire grammar is handled by one file which runs through a YACC-
like program to produce a C source file which is then compiled into 
NARS2000.  It is a tribute to the designers of LALR compiler-compilers. 
I would not like to tackle the above notation parsing problem by writing a
program from scratch.  This problem is ideally suited to a grammar 
representation.

Function Header Grammar

Another grammar in NARS2000 parses user-defined function/operator 

-2-



headers.  What with the many variations in syntax used for optional and 
multi-named results/left argument/right argument in both functions and 
operators as well as left and right operand syntax for operators, this can
be a complicated string to parse.  For example, the following is a 
maximum feature function header:

{Z1 Z2}←{L1 L2 L3} (LO F[X] RO) (R1 R2 R3 R4);A B ⍝Hi

which defines a dyadic operator F with an axis value, left and right 
operands, a four-element right argument, an optional three-element left 
argument, a non-displayable two-element result, two local names, and a
comment.

Recently, spaces were added as an alternative separator in the list of 
locals as per APL2:

∇Z←foo R;a b c d

Control Structure Grammar

A third grammar parses control structures on a whole defined function.  
This grammar is becoming difficult to maintain and could use a re-write.

Syntax Grammar

A fourth grammar was used to parse APL syntax.  However this attempt 
proved to be very difficult both to write and maintain, so I abandoned it 
in favor of 2by2.  The problems with parsing APL syntax in an LALR 
grammar are several:

 the dual nature of hybrid symbols (/ ⌿ \ ⍀)

 parenthesized functions and operators

 bracket indexing applied to variables vs. functions vs. operators

among others.   On the other hand, what is a problem for an LALR 
grammar is easy to handle with a parser based on binding strength such
as 2by2.

-3-



Syntax Coloring
With the availability of Hypercomplex numbers, making their display 
more readable is important what with the additional special separators 
involved.  To this end, NARS2000 supports a syntax-coloring category 
of Point Notation which covers these symbols as used in constants:  
beEijJklprvx.  For example, I find it easier to read 2.1i3j4k5 with 
the separators in a different color.

Implement ⎕T
This niladic system function is a simple idea (suggested by David 
Rabenhorst) to return the current CPU Tick Count in seconds.  This 
makes for precise timings by differencing such as

a←⎕T ⋄ *○0i1 ⋄ ⎕T-a

Implement Reduction Of Singletons
You may remember from Minnowbrook APL Workshop 2010, that I 
proposed this concept.  I've now polished it to the point that I released it 
in a version of NARS2000 earlier this year.  One sticking point was the 
treatment of ,\1 2 3 which previously (i.e., on your systems), returns 
1 (1 2) (1 2 3), but on NARS2000 now signals a DOMAIN ERROR.
I'm now more then ever convinced that this is a good idea.  There is a 
more recent version of the PDF file on my http://sudleyplace.com/APL 
website – see “Reduction of Singletons”.

Implement Negative Zero (¯0)
This idea stems from implementing infinity, in particular signed infinities. 
There are two ways to adjoin infinity to a programming language such 
as APL:  unsigned (i.e., one infinity such that -∞ ←→ ∞), or signed (i.e. 
two infinities, positive and negative such that -∞ ←→ ¯∞  and -¯∞ ←→ 
∞).  Early on, I chose to implement the latter and integrated it into the 
implementation.  This revealed a lot of indeterminate cases which were 
handled by a new system variable ⎕IC which allows the user to control 

-4-

http://sudleyplace.com/APL


each case individually.

Long after that, I realized there was a failing identity, ÷÷X ←→ X, which 
should be true on all numeric X (ignoring precision loss), even on zeros 
and infinities.  The missing case was ÷÷¯∞ where without support for 
negative zero (¯0) incorrectly returns ∞, not ¯∞.

This excellent idea has been present in IEE-754 compliant hardware 
since the days of the Intel 8087 chip some three decades ago.  Very 
unfortunately it falls short in this context because it relies on hardware 
support in integer arithmetic not present in modern systems, and not 
likely to be in any future system.  Floating point numbers, both fixed 
precision in hardware (IEEE-754 and following) and multiple precision in
software (MPFR), each support negative zero, and identically so.  The 
problem is that there is no support for negative zero in either integer 
numbers in hardware nor multiple precision integer and rational 
numbers in software (MPIR).  This means that every time the 
implementation, say, negates an array of integers, if only one value is 
zero, the whole array blows up to floating point.  This was not a problem
when I introduced signed infinities as it often was replacing an error, so 
blowing up to fixed precision floating point wasn't seen as a downside.

Frankly, the problem for me was not so much the precision and 
performance hit, but the extraordinary programming overhead in the 
implementation needed to handle all of the exceptions which could 
occur from something as simple as multiplying two numbers.  This 
proved to be an exceptional burden when implementing Hypercomplex 
numbers, as I use many internal functions that take a CHO number or 
two and return the appropriate CHO number, passing the values as 
structures rather than pointers.  This allows me to write much more 
natural code in C for CHO fixed precision floating point algorithms, but 
not if I have to worry about type promotion at every turn.  It also meant 
that I had trouble testing the Complex (Gaussian) integer code as the 
result could be promoted to Complex floating point at any time.  
Unbeknownst to me, I was no longer testing Complex integer code 
defeating the whole purpose of Gaussian integers in the first place.

-5-



Eventually, I abandoned that effort and disabled all of the code to 
handle negative zero, guarding it with an invisible user preference.  If 
you really want it, it's there, but not by default.  Maybe I'll enable it again
as a local feature, say, ⎕FEATURE[2], where ⎕FEATURE[1] controls 
whether or not to allow negative indexing, another idea that didn't 
withstand the test of usage.

If I can find the time, I might back off from two signed infinities to one 
unsigned infinity which doesn't require negative zero.  For those 
implementors of you who were considering implementing signed 
infinities, once again procrastination is the winning strategy.

Convert Strands As A Whole
One tricky situation with numeric strands and multiple precision 
numbers is that treating the elements individually instead of as a whole 
can lead to undesirable results.  For example, one way to process the 
strand 1111111111111111111111111111111111111 1r2 is to 
convert the string of 1s to a floating point number (which is what you 
would do if it were alone on the line), then merge (catenate) it with 1r2, 
first promoting each to multiple precision floating point.  A more 
intelligent way is to scan the string of 1s noting that it can be 
represented as a multiple precision integer/rational number, convert it 
floating point, and then when the 1r2 comes along re-convert the string 
of 1s to a multiple precision integer/rational number and merge with 1r2
to yield a multiple precision integer/rational strand.

A different example is 0.1 5v which is preferably converted to a 
multiple precision floating point number with 0.1 represented as a 
multiple precision floating point number natively, rather than converted 
from a 53-bit precision floating point number to a multiple precision 
floating point number.

As you can see, the goal is to avoid losing precision by unnecessarily 
promoting to fixed or multiple precision floating point.  Again, this issue 
is of concern only if you support multiple precision integer/rational 
numbers.

-6-



Release 2by2 Parser 

This parser technique comes from the paper by Bunda and Gerth1.  It is 
easy to modify to implement different syntax rules.  I've copied the rules 
of APL2 with extensions to cover Trains, Anonymous 
Functions/Operators, Hybrid symbols (/ ⌿ ⍀ \), special handling of 
niladic functions, etc.  At the same time, I revamped the way I handled 
reference counts, which was quite difficult until I got my head around 
how to handle derived functions.

Google Code
At the last meeting I mentioned that I was delighted to move my source 
code from hosting my own SVN repository to GoogleCode.  You may 
already be aware that GoogleCode is folding, so once again I moved 
my source code this time to SourceForge.  Then a couple of months 
ago, SF took a hit and went down for a week.  What a pain!

I also mentioned then that I had moved the discussion forum from 
hosting it myself to a commercial service.  Now, that service has 
stopped answering tech support questions, so once again I'm in the 
market for another discussion forum host.  I'm open to suggestions.

Switch To New Compiler
Compilers get better over time, however the work to switch to a new 
compiler can be non-trivial, even daunting.  Eventually I decided to bite 
the bullet and switch from Visual Studio 2008 to VS 2013, and I'm glad I
did.  While tehre were many changes to the build process, it did improve
compile times as well as make available additional features of the C 
language.

-7-



Current & Future Work

Hypercomplex Numbers
While more work remains to be done, I've already prepared to bundle 
the CHO code together and release it as a LGPL library so that anyone 
can take advantage of these algebraic structures in manner similar to 
how MPIR and MPFR are used.

Access to External Processes
What with Hypercomplex numbers available, there is a greater need to 
show them off, such as plotting them rotating a multi-dimensional figure.
This is a job for Shared Variables and Name Association and possibly a 
system function or two.

References
1. "APL two by two-syntax analysis by pairwise reduction", Bunda, 

J.D. and Gerth, J.A., APL '84 Proceedings of the International 
Conference on APL

-8-


