
Numerical
Differentiation

In APL
Bob Smith

Sudley Place Software
Originally Written

2 Sep 2019
Updated

16 Sep 2019

Introduction
While working on the Matrix operator1, I’ve found I needed a
Numerical Differentiation (ND) operator in order to apply the Matrix
operator to non-diagonalizable matrices. This operator uses
Numerical Analysis methods to calculate the value of the Derivative of
a function at a given point.

Notation
The symbol chosen for this operator is Curly D (∂) (Alt-’D’ U+2202)
used in mathematics for Partial Derivatives.

For example,

 ! 0 ⋄ ¯1∂ g1
¯0.5772156649015197
¯0.5772156649015329
 ! 0 ⋄ 1∂∂ g2+1p2÷6
1.9781119906525646
1.978111990655945

That is, exact value of the first derivative of the Factorial function at 0
is -, where  is Gamma, the Euler-Mascheroni constant, and the

-1-

exact value of the second derivative is 2+2/6. The derived function
may be called dyadically, too:

 X←0.6 ⋄ 1○ X ⋄ 2○X∂
0.8253356149096904
0.8253356149096783

where the first derivative of the Sine function is the Cosine function.
In this and following examples, the rightmost of consecutive digits that
all agree with the exact result is marked.

Accuracy
This topic has many interesting facets. During a literature search, I
found a 20-year old paper3 that describes a new set of differencing
formulas for ND – when I implemented them in APL, they turned out to
have superior accuracy. In fact, when compared to the ND routines in
the GNU Scientific Library (GSL), the new approximations are
consistently more accurate – up to 13 or 14 significant digits vs. 9 or
10 for GSL. The accuracy on both Multiple-Precision FP and Ball
Arithmetic numbers is even more impressive because there the
precision can be increased so as to deliver a result with exactly the
desired precision.

I became convinced that this algorithm was worth investigating when I
saw the following “worth a thousand words” picture in the original3
paper:

-2-

Classification
This algorithm is in the class of ND differencing algorithms, all based
on Taylor series5 expansions. This type of algorithm samples nearby
points around the target point x, evaluates the function at these
points, differences them in pairs, weights those differences, and then
adds them together to achieve the final result. For example, the first
order approach is to calculate f(x+h) – f(x-h) all divided by 2h,

where h is some small number. This means the function is sampled

at two points x±h, differenced (subtract one from the other) and

weighted by 1/2h. The parameters to this algorithm are the Sampling

Frequency (h, the radius around x) and the Sample Size (number of

points, e.g. x±h, x±h/2, x±h/4, etc.). All ND differencing algorithms
use some variation on this template.

APL Code
The (origin-1) APL code to implement this algorithm is as follows:

The three values below are used to bridge the difference between
even and odd degrees of the Derivative.

c←⌊(p-1)÷2 ⋄ c1←0=2|c ⋄ c2←0=2|p

The following lines calculate into tab the weights on the sample
values. These calculations are stored entirely in a static table in the
library code. The Variant operator on the Factorial function
implements a Pochhammer Symbol6 which is a generalization of
Double Factorial as in !!(2N-1) = (2N-1)×(2N-3)×(2N-5)…1.

X←×/¨(⊂[2]010 2‼c (N-1))∘.(⌷¨)⊂¨(¯1+2×(⊂⍳N)~¨⍳N)÷2
X←+⌿X*¯2
j←(1-N)..N
Cnj←((!⍠((-N)2)¯1+2×N)*2)÷(4*N)×(!N-j)×!N+j-1
tab←(¯1*j+c1)×((!p)÷((¯1+2×j)÷2)*2+c2)×Cnj×(⌽X),X

-3-

All of the lines above (including the calculation of c, c1, and c2) are
part of the static tables when calculated across all relevant p and N as
a p by N matrix of length 2×N vectors. In this implementation, I chose
p←1..9 and N←1..7. In practice, the above calculations are all done
as Rational Numbers so as not to lose precision were they to be done
in Floating Point.

The following three lines constitute the entire algorithm
exclusive of generation of the static tables:

Call the function on the 2×N Sample Values spaced apart by T around
R weighting the result by the appropriate 2×N length vector from tab.

w←p N⊃tab ⋄ Z←w+.×F R+T×(¯1+2×(1-N)..N)÷2

The sum of the weights is 0 for odd degrees. For even degrees that
sum is the weight on the value of function at the center point whose
product is subtracted from the weighted sum above.

:if 0=2|p ⋄ Z-←(+/w)×F R ⋄ :end

Finally, scale the result by T for each degree of the derivative.

Z÷←T*p

where F is the function whose derivative is being calculated, N is the
Order (Sample Size), p is the Degree (1st, 2nd,3rd), and T is the
Sampling Frequency (10SFE) of the Derivative.

Benefits
Delightfully, this paper (along with two related papers2, 4 from the same
authors) provides a number of benefits:

• The algorithm is quite simple as seen above

• Because it is so simple, it extends easily to

• Double-Precision FP numbers (GSL)

-4-

• Multiple-Precision FP numbers (MPFR)

• Ball Arithmetic numbers (ARB)

• Varying sample sizes and spacing

• Higher degrees such as 2nd, 3rd, 4th derivative, etc.

• Hypercomplex numbers

I have finished implementing all of this except the extension to
Hypercomplex numbers. The latter looks doable, but I don’t
understand the theory as yet.

Interestingly, the degree of the Derivative is obtained simply by
counting the number of occurrences of ∂ in the Left Operand. This
number is passed to the basic library routine which uses it (along with
the Order) as an index into a two-dimensional array (p by N) of vectors
of length 2×N to obtain the weights on the values of the function at the
2×N sampling points. Because the Degree is used solely as an index
to an array to retrieve a vector of weights, there is no performance
impact whatsoever for using one Degree over another.

I intend to contribute this algorithm (already written in C) to each of the
GSL, MPFR, and ARB open source libraries.

Forward and Backward Differencing
Central Differencing samples points on both sides of a center point
which works fine for a function everywhere defined. However if you
need a derivative of a function undefined below a certain point and
you need the derivative at that point, Central Differencing won’t work.

Forward differencing samples the values of the function at or above
the given point, never below. For example, in the set of Real
numbers, the square root of X is undefined below 0, and so if you
want to calculate a derivative of that function at 0, you’ll need Forward
Differencing. Backward Differencing is simply the dual to Forward
Differencing.

At the moment, only Central Differencing is implemented, but this

-5-

might be extended in the future.

Variants
The Variant operator has been extended to the ND operator so as to
gain access to finer control of the algorithm. In particular, it may be
used to override the default Order (5) of the derivative as well as the
Sampling Frequency Exponent as in f ⍠(Ord SFE) R∂ , where Ord
must be first, SFE second. To override just the Order, use f ⍠Ord R∂ .
To change the Sampling Frequency Exponent but not the Order, use 0
for the Order.

For example, trying several different Orders:

 ⎕FPC←128 ⋄ ⎕PP←40
 ! ⍠4 0∂ v
¯0.577215664901532860606512090081972171634
 ! ⍠5 0∂ v ⍝ Default Order
¯0.577215664901532860606512090082402425136
 ! ⍠6 0∂ v
¯0.577215664901532860606512090082402403875
 ! ⍠7 0∂ v
¯0.577215664901532860606512090082402444579
 ¯1g1v ⍝ Exact value
¯0.577215664901532860606512090082402431043

For this example at least, Order 5 provides a marked improvement
over the previous Order without much improvement above that.

The default Sampling Frequency Exponent is

 SFE←-⌊0.5+⎕FPC÷32

which translates to a Sampling Frequency of

 SF←10*SFE

This value is used as the spacing between Sample Values passed to
the function. The SFE may be overridden as described above.

Forward and Backward Differencing may be specified by including a

-6-

character scalar anywhere in the Right Operand of the Variant
operator. The possibilities are 'b', 'f', and 'c' for Backward,
Forward, and Central Differencing. Again, at the moment, only
Central Differencing is implemented in the new code.

For reference, the original Order 2 ND code from GSL is available
through the Variant operator by using the uppercase letter in the
above list. The GSL code implements all three forms of Differencing,
and has been translated into both Multiple-Precision Floating Point
and Ball Arithmetic.

For example,

 ! ⍠'C' 0 ⍝ GSL code∂
¯0.5772156648930862
 ! ⍠'c' 0 ⍝ New code∂
¯0.5772156649015363
 ! ⍠'C' 0∂ ± ⍝ GSL Ball code
¯0.577215664901532860606512052695926256206±2.2E¯24
 ! ⍠'c' 0∂ ± ⍝ New Ball code, same as ! 0∂ ±
¯0.577215664901532860606512090082402327882±1.6E¯33
 ¯1g1v ⍝ Exact value
¯0.577215664901532860606512090082402431043

Idioms and Inverses
An extension to this approach to ND is one taken by J which first
attempts to recognize the ND operator’s Right Operand function as an
idiom by looking up its derivative in a table and, if successful, execute
the derivative function directly on the argument. For example, the (1st)
derivative of sine (1○⍵) is cosine (2○⍵), easily resolved by a table
lookup. Failing that, numerically differentiate the function.

A successful table lookup can both speed up the calculation and
improve the accuracy of the result. Moreover, higher degree
derivatives can be calculated through recursive table lookups.

Another opportunity for idiom recognition used by J is when evaluating

-7-

the inverse of the Derivative which is expressed in APL as f ⍣¯1 ⍵∂ .

Both of these excellent ideas are on my list of future work.

Online Version
This paper is an ongoing effort and can be out-of-date the next day. To
find the most recent version, go to http://sudleyplace.com/APL/ and
look for the title of this paper on that page.

Executable Version
The latest Alpha version of the NARS2000 software may be found in
http://www.nars2000.org/download/binaries/alpha/ in either 32- or 64-
bit versions. This software runs natively under Microsoft Windows XP
or later as well as any Linux or Mac OS version which supports Wine
(32-bit only) which acts as a translation layer.

References
1. NARS2000 Wiki, “Matrix Operator”

http://wiki.nars2000.org/index.php/Matrix

2. “Closed-form Expressions for the Finite Difference Approximations
of First and Higher Derivatives Based on Taylor Series”, I.R.
Khan, R. Ohba / Journal of Computational and Applied
Mathematics 107 (1999) pp. 179-193

3. “New Finite Difference Formulas for Numerical Differentiation”,
I.R. Khan, R. Ohba / Journal of Computational and Applied
Mathematics 126 (2000) pp. 269-276

4. “Taylor Series Based Finite Difference Approximations of Higher-
Degree Derivatives”, I.R. Khan, R. Ohba / Journal of
Computational and Applied Mathematics 154 (2003) pp. 115-124

5. Wikipedia, “Taylor Series”,
https://en.wikipedia.org/wiki/Taylor_series

-8-

http://www.nars2000.org/download/binaries/alpha/
https://en.wikipedia.org/wiki/Taylor_series

6. NARS2000 Wiki, “Variant – Rising and Falling Factorials”,
http://wiki.nars2000.org/index.php/Variant#Rising_and_Falling_F
actorials

-9-

