
Integer-Only Functions
v.

Floating Point Numbers
Bob Smith

Sudley Place Software
Originally Written

31 Sep 2017
Updated

24 Feb 2020

Integer-Only Functions
The functions GCD, LCM, Residue, and Encode on FLTs/MPFRs
employ some form of Comparison Tolerance (perhaps not exactly
⎕CT) to decide when to terminate. These functions reference
Comparison Tolerance in two ways: directly through some form of
(Fixed System-wide?) Comparison Tolerance and indirectly as ⎕CT
through their reliance on Floor and/or Ceiling.

I view the primitives GCD, LCM, Residue, and Encode fundamentally
as Integer-only functions. For better or worse and solely for the sake
of datatype completeness, these functions have been extended to
Fixed-Precision (FLT) and Multiple-Precision (MPFR) Floating Point
numbers. It's true that the Integer-only algorithms used by these
functions can be rewritten to provide an answer given FLTs/MPFRs,
but often only after tweaking the algorithm to flush to zero certain
small enough intermediate values – an instance of Absolute
Tolerance and a problem the Integer-only versions of these
algorithms don’t share. The change made for the FLT/MPFR-only
versions is done solely to allow the algorithm to terminate, but I
believe, at the price of User Confusion.

-1-

Recently, there was a long thread in the J Programming Forum
(Puzzling result) which revolved around the issue of the Residue of
FLTs. The result was puzzling because the J Residue function with a
particular right argument produced a different result depending on
whether the small modulus (196) was stored as an INT or FLT.

One measure of success of our implementations is to check for what
values of N will cause the expression N|N×⍳10 to produce non-zero
results with ⎕CT←0? Try it for N∊0.1..0.9.

Rather than continue to tweak our FLT/MPFR algorithms to force them
to provide correct-looking answers it’s time to take a stand. It is not
worth the confusion it introduces.

This means that my solution to how these four functions should
behave on FLTs/MPFRs is to ban non-integer arguments (as in
DOMAIN ERROR). That is, only INTs, MPIRs (whose denominator is
one), or FLTs/MPFRs whose value is within Integer Tolerance of an
integer should be allowed.

If you need to use small FLTs/MPFRs with these functions, scale (and
possibly round) the arguments to integers, calculate the result on the
integers, and scale back that result to the original datatype. If you find
that you can’t easily scale the arguments to integers, then that’s a sign
you are using the wrong algorithm.

This scaling could be handled via the Variant operator along with
Integer Tolerance were the Variant operator applied to these
functions to accept a FLT scaling factor (instead of ⎕CT) as in

-2-

 ⎕CT←0 ⋄ ⎕PP←10
 0.7|0.7×⍳10
0 0 0.7 0 0 0.7 0 0 0 0
 0.7 (|⍠10) 0.7×⍳10
0 0 0 0 0 0 0 0 0 0

If you need to use very small FLTs/MPFRs with these functions, you
are asking for trouble.

Bob Smith
bsmith@sudleyplace.com
304-707-7963

-3-

mailto:bsmith@sudleyplace.com

