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Introduction

Division of non-commutative numbers involves a choice.  If a and b 
are non-commutative numbers (that is, Quaternions or Octonions), 
then a÷b may be calculated either as a×÷b (the right quotient) or as 
(÷b)×a (the left quotient), where ÷b is as always (+b)÷b×+b.  Which
choice is made has wider implications than just that primitive function.

As division is used internally (directly or indirectly) in many primitives 
(e.g., GCD, LCM, Residue, Encode, and Base Value) on non-
commutative numbers, it is important to determine which quotient to 
use in each case.

Prerequisite Reading

The paper “Hypercomplex Notation in APL”4 provides a summary of 
the notation used in this paper for Hypercomplex numbers.  The paper
“Hypercomplex GCD in APL”1 is necessary reading in order to 
understand this paper as it introduces algorithms for Floor, Residue, 
and GCD, and it resolves the question of Fractionality.  
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Division Example

These two quotients (left and right) occur with non-commutative 
numbers only.

They come into play in the following somewhat counterintuitive 
example:  suppose a and b are Quaternions and c←a×b, and we're 
using the default of the right quotient for the Division primitive.  The 
quotient c÷b is reliably a because

c÷b ←→ (a×b)÷b
    ←→ ((a×b)×+b)÷b×+b
    ←→ (a×b×+b)÷b×+b
    ←→ a

and because b×+b is a real number, and multiplication of Quaternions
is associative.

However, c÷a is not always b because

c÷a ←→  (a×b)÷a
    ←→  ((a×b)×+a)÷a×+a
    ←/→ ((b×a)×+a)÷a×+a

and because Quaternion multiplication is not commutative.  Instead, 
the left quotient of c÷a is

c÷a ←→ (a×b)÷a
    ←→ ((+a)×a×b)÷(+a)×a
    ←→ (((+a)×a)×b)÷(+a)×a
    ←→ b

because (+a)×a is a real number, and multiplication of Quaternions 
is associative.  This indicates that the choice of right or left quotients is
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one over which the programmer (rather than the system implementor) 
should have direct control without having to write out the explicit forms
such as in the examples above.

Division Quotients
In order to deal with the choice of left or right quotients when dividing 
non-commutative numbers, a new system variable ⎕LR is introduced.  
This variable may assume the value of 'r' or 'l' to indicate that the 
right (resp. left) quotient should be returned from division.  The default
value is 'r'.

Correspondingly, the Variant operator (⍠) has been extended to allow 
⎕LR to be specified in a shorthand form on selected primitive functions
and in a longhand form on all primitive functions as well as user 
defined functions and operators, anonymous functions, and derived 
functions.  For example (in shorthand form),

      (a8 b8)←<?2 8⍴20
      c8←a8×b8
      b8=c8÷⍠'l' a8
1
      a8=c8÷⍠'r' b8
1

or when used on a user-defined function/operator, anonymous, or 
derived function (in longhand form)

      {⎕LR}⍠('LR' 'l')
l
      {⎕LR}⍠('LR' 'r')
r

Floor Primitive
From the conclusion of the earlier paper “Hypercomplex GCD”1, the 
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only Floor function that satisfies Fractionality on Quaternions is the 
one defined by Hurwitz and then only with its domain (and range) 
extended to Hurwitz Quaternions.  Because Floor on Octonions does 
not have Fractionality, this primitive is not defined on Octonions.

Z←UF R;F T
⍝ ⌊R for Hypercomplex numbers
⍝   using Hurwitz's Floor function
⍝   returning the nearest Hurwitzian (half-)integer
⍝ Scalar R
⍝ Sensitive to ⎕CT
F←>R ⋄ Z←<⌊F+(1+⊤F)÷2
F←⌊F ⋄ T←< F+(1+⊤F)÷2
:if (|R-Z)>|R-T ⋄ Z←T ⋄ :end

Implementation Note
In the Alpha version of NARS2000, the two definitions of Floor are 
distinguished by the value of ⎕FEATURE[3].  If that value is 0, then 
McDonnell's version of Floor is used for Complex numbers on Floor, 
Ceiling, Residue, GCD, LCM, Encode, and Base Value, and 
Quaternions on Floor, Ceiling, Residue, GCD, LCM, Encode, and 
Base Value all signal a DOMAIN ERROR.  If that value is 1, then 
Hurwitz's version of  Floor, Ceiling, Residue, GCD, LCM, Encode, and 
Base Value is used for Complex and Quaternion numbers.

Residue
The Residue function (L|R) is defined on Quaternions by splitting it 
into two special cases (L=0 1) and one general case (none of the 
above), a naïve version of which is as follows:
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Z←L UR1 R
⍝ L|R for Hypercomplex numbers
⍝   using Hurwitz's Floor function
⍝ Scalar L and R
⍝ Sensitive to ⎕CT
→(L(=⍠0) 0 1)/L0 L1 ⍝ a.k.a. L=0 1 with ⎕CT←0
Z←L×1∇R÷L ⋄ →0
L0:Z←R ⋄ →0
L1:Z←R-UF R

This version works perfectly fine on commutative numbers, however it 
has problems on non-commutative numbers depending upon the 
setting of ⎕LR – for example,

      a←1i2x ⋄ b←1i5j2x
      ⎕LR←'l' ⋄ ⎕←c1L←a UR1 b
¯1r2i¯1r2j1r2k¯1r2
      ⎕LR←'r' ⋄ ⎕←c1R←a UR1 b
¯1r2i¯1r2j¯7r10k1r10
      ⎕LR←'l' ⋄ a UR1 b-c1L
0
      ⎕LR←'r' ⋄ a UR1 b-c1R
0j24r25k¯7r25

where c1R is clearly a bogus result as it is not even a Quaternion 
Integer, not to mention the fact that it doesn't satisfy the most basic 
identity of Residue (0=a|b-a|b).  Note that the arguments to this 
function (and the ones below) are all expressed as Rational numbers3 
(e.g., 3x or 1r3) so as to avoid inexact floating point results due to 
round off error in the division.

The problem with UR1 and ⎕LR←'r' lies with the statement 
Z←L×1∇R÷L where we divide by L on one side returning a right 
quotient and multiply by L on the left side.  To be consistent, we need 
to multiply on the same side as the quotient we get from division, that 
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is, we need to use all right divisions and multiplications or all left 
divisions and multiplications.  In other words, we need to make this 
statement sensitive to ⎕LR.  One way to accomplish this is as follows:

Z←L UR R
⍝ L|R for Hypercomplex numbers
⍝   using Hurwitz's Floor function
⍝ Scalar L and R
⍝ Sensitive to ⎕CT and ⎕LR
→(L(=⍠0) 0 1)/L0 L1 ⍝ a.k.a. L=0 1 with ⎕CT←0
:select ⎕LR
  :case 'l' ⋄ Z←L× 1∇R÷L ⋄ →0 ⍝ ∇ is recursive call
  :case 'r' ⋄ Z←L×⍨1∇R÷L ⋄ →0 ⍝ ⍨ is Commute oper
:end
L0:Z←R ⋄ →0
L1:Z←R-UF R

This definition supersedes the one from “Hypercomplex GCD”.

Essentially, this provides two results from Residue depending upon 
the value of ⎕LR, one for left quotients and one for right quotients:

      a←1i2x ⋄ b←1i5j2x
      ⎕LR←'l' ⋄ ⎕←c2L←a UR b
¯1r2i¯1r2j1r2k¯1r2
      ⎕LR←'r' ⋄ ⎕←c2R←a UR b
¯1r2i¯1r2j1r2k1r2

Also, these results check out as valid residues:

      ⎕LR←'l' ⋄ a UR b-c2L
0
      ⎕LR←'r' ⋄ a UR b-c2R
0
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The function UR is implemented in NARS2000 as the Residue 
primitive function on Quaternions.  This primitive is not defined on 
Octonions because it is defined in terms of the Floor primitive which is
not defined on Octonions.

Encode

This primitive function (L⊤R) also has a naïve definition on 
Hypercomplex numbers expressed as an APL function as follows:

Z←L UE1 R;⎕CT I
⍝ L⊤R for Hypercomplex numbers
⍝   using Hurwitz's Residue function
⍝ Scalar/Vector L, Scalar R
⍝ Sensitive to ⎕LR
⎕CT←0
L←1/L ⋄ Z←(⍴L)⍴0
:for I :in ⌽⍳⍴L
  Z[I]←L[I] UR R
  :leaveif (L[I]=0)∨R=Z[I]
  R←(R-Z[I])÷L[I]
:end

For example, using randomly chosen Quaternions:

      ⎕←L←0,<?5 4⍴10x
0 3i4j2k5 9i10j4k7 4i1j9k9 1i4j6k5 8i7j7k4
      ⎕←R←<?4⍴50x
8i10j30k40
      ⎕LR←'r' ⋄ ⎕←ZR←L UE1 R
0 0 0 0 3i1k2 ¯1i¯5j¯1k5

Note that we prepend a zero to L so as to be able to invert the 
function.
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This algorithm uses two primitives (Residue and Division) sensitive to 
⎕LR.  However, trying the other combinations of one'l' and the other
'r' in either order as Variant operator operands to those two 
primitives yields values that are not Hurwitzian Quaternions.  The 
combination of both primitives calculated with left quotients does yield 
an integral result:

      ⎕LR←'l' ⋄ ⎕←ZL←L UE1 R
0 0 0 0 3i¯1j2k1 ¯5i¯2j4k¯1

Using the Base Value primitive to convert these two results back into 
scalars depends on how one defines Base Value.  For example, if 
Base Value is defined as follows:

      WR←×/¨(⌽-0..¯1+⍴1/L)↑¨⊂L
      R=ZR+.×WR
1

or if Base Value is defined as follows:

      WL←⌽1,×\⌽1↓L
      R=WL+.×ZL
1

Note the switched arguments between the two examples.

While the second definition looks cleaner, it doesn't represent how one
normally thinks of constructing the weighting vector for Base Value.  
Essentially, in the definition of the weighting vector WR, for (say) a 
three-element L, its values are defined as follows:

(×/L[1 2 3]),(×/L[2 3]),L[3],1

whereas the corresponding weighting vector WL is defined as follows:
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(×/L[3 2 1]),(×/L[3 2]),L[3],1

If multiplication in this context were commutative, these two weighting 
vectors would be the same, but it is not.  As can be seen, the 
weighting vector WR multiplies the values in L in the correct order as 
they are encountered while scanning L from right to left, whereas WL 
reverses their order before multiplying them which rules it out as a 
definition of Base Value.

Thus, Base Value is a right quotient primitive function only.

If there's only one way to define the Base Value primitive (with 
⎕LR←'r'), there is only one way to define the Encode primitive (with 
⎕LR←'r).  This corresponds to the following algorithm:

Z←L UE R;⎕CT ⎕LR I
⍝ L⊤R for Hypercomplex numbers
⍝   using Hurwitz's Residue function
⍝ Scalar/Vector L, Scalar R
⎕CT←0 ⋄ ⎕LR←'r'
L←1/L ⋄ Z←(⍴L)⍴0
:for I :in ⌽⍳⍴L
  Z[I]←L[I] UR R
  :leaveif (L[I]=0)∨R=Z[I]
  R←(R-Z[I])÷L[I]
:end

The function UE is implemented in NARS2000 as the Encode primitive
function on Quaternions.  This primitive is not defined on Octonions 
because it is defined in terms of the Residue primitive which is not 
defined on Octonions.
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Base Value

In order to enable the identity R≡(0,L)⊥(0,L)⊤R, care must be 
taken as to how this primitive calculates its result.  In particular, its 
weighting vector must be calculated as described above and the 
multiplication with the value in the right argument with the weighting 
vector from the left argument must be done with the right argument on
the left and the weighting vector on the right.

Z←L UB R;W
⍝ L⊥R for Hypercomplex numbers
⍝ Scalar/Vector L, Scalar R
W←×/¨(⌽-0..¯1+⍴1/L)↑¨⊂L
Z←R+.×W

The function UB is implemented in NARS2000 as the Base Value 
primitive function on Quaternions.  This primitive is not defined on 
Octonions because the inverse function Encode is defined in terms of 
the Residue primitive which is not defined on Octonions.

GCD

Greatest Common Divisor on Quaternions is defined in 
“Hypercomplex GCD” as follows:
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Z←L UG R;T ⎕CT
⍝ L∨R for Hypercomplex numbers
⍝   using Hurwitz's Residue function
⍝ Scalar L and R
⍝ Sensitive to ⎕LR
⎕CT←1E¯10   ⍝ FP numbers only
:repeat     ⍝ Euclidean Algorithm
  T←L
  L←L UR R
  :Assert (|L)<|T
  R←T
:until (|L)≤4E¯15   ⍝ Again, FP numbers only
⍝ Rotate R into the first quadrant
⍝  or first two bi-quadrants
Z←rotateGCD R

The GCD function satisfies the following identities on commutative 
and non-commutative numbers (with IsHalfInt←{∨⌿∧/0 1∘.=2|
2×>⍵}):

0=L∨R|L
0=L∨R|R
IsHalfInt L÷L∨R
IsHalfInt R÷L∨R

The function UG is implemented in NARS2000 as the GCD primitive 
function on Quaternions.  This primitive is not defined on Octonions 
because it is defined in terms of the Residue primitive which is not 
defined on Octonions.

LCM

The Least Common Multiple primitive (L∧R) is defined as (L×R)÷L∨R.
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The LCM function satisfies the following identities on commutative 
numbers:

0=L|L∧R
0=R|L∧R
IsHalfInt (L∧R)÷L
IsHalfInt (L∧R)÷R

but because Residue and Division are sensitive to the value of ⎕LR, 
so are these identities, and in a complicated way.  In particular, if the 
LCM is calculated with ⎕LR←'r', the first and third identities are valid 
with ⎕LR←'l', and if the LCM is calculated with ⎕LR←'l', the second
and fourth are valid with ⎕LR←'r'.

That is,

⎕LR←'r' ⋄ Z←L∧R
⎕LR←'l' ⋄ 0=L|Z
⎕LR←'l' ⋄ IsHalfInt Z÷L

⎕LR←'l' ⋄ Z←L∧R
⎕LR←'r' ⋄ 0=R|Z
⎕LR←'r' ⋄ IsHalfInt Z÷R

The corresponding function is

Z←L UL R
⍝ L∧R for Hypercomplex numbers
⍝   using Hurwitz's GCD function
⍝ Scalar L and R
⍝ Sensitive to ⎕LR
Z←(L×R)÷L UG R

The function UL is implemented in NARS2000 as the LCM primitive 
function on Quaternions.  This primitive is not defined on Octonions 
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because it is defined in terms of the GCD primitive which is not 
defined on Octonions.

Conclusion

Division Quotients come into play not just with Division but also with 
other primitives whose definition uses Division either directly or 
indirectly.  The system var ⎕LR is introduced so as to enable the 
programmer to control the choice of such quotients and results.  The 
programmer needs to take care when using the results of primitive 
functions sensitive to ⎕LR.

Encode and Base Value are right quotient primitives only.  GCD, LCM,
and Residue are sensitive to the value of ⎕LR and in general they 
each produce different results depending upon that system variable.

Online Version

This paper is an ongoing effort and can be out-of-date the next day.  
To find the most recent version, goto http://sudleyplace.com/APL  /   and 
look for the title of this paper on that page.  Related papers such as 
“Hypercomplex Notation in APL”4, “Hypercomplex GCD in APL”1, 
“Hypercomplex Numbers in APL”2 as well as “Rational & Variable-
precision Floating Point Numbers”3 may be found in the same place.

Executable Version

All of the above APL functions may be executed in NARS2000, an 
experimental APL interpreter available for free as Open Source 
software.

The latest released version of the NARS2000 software may be found 
in http://www.nars2000.org/download/ in either 32- or 64-bit versions.  
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This software runs natively under Microsoft Windows XP or later as 
well as any Linux or Mac OS version which supports Wine (32-bit 
only) which acts as a translation layer.

The choice of which Floor function to invoke on Hypercomplex 
numbers is under user-control.  This choice applies not only to the 
Floor primitive, but also all other primitive functions directly of 
indirectly sensitive to Floor.  NARS2000 uses McDonnell's Floor 
function when ⎕FEATURE[3]←0 and Hurwitz's Floor function when 
⎕FEATURE[3]←1.

When using McDonnell's Floor function, all primitives that depend on 
Floor on Quaternions signal a DOMAIN ERROR.  Only when using 
Hurwitz's Floor function does the system produce valid results.
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