
Hypercomplex Quotients
in APL
Bob Smith

Sudley Place Software
Originally Written

7 Apr 2016
Updated

11 Apr 2018

Introduction

Division of non-commutative numbers involves a choice. If a and b
are non-commutative numbers (that is, Quaternions or Octonions),
then a÷b may be calculated either as a×÷b (the right quotient) or as
(÷b)×a (the left quotient), where ÷b is as always (+b)÷b×+b. Which
choice is made has wider implications than just that primitive function.

As division is used internally (directly or indirectly) in many primitives
(e.g., GCD, LCM, Residue, Encode, and Base Value) on non-
commutative numbers, it is important to determine which quotient to
use in each case.

Prerequisite Reading

The paper “Hypercomplex Notation in APL”4 provides a summary of
the notation used in this paper for Hypercomplex numbers. The paper
“Hypercomplex GCD in APL”1 is necessary reading in order to
understand this paper as it introduces algorithms for Floor, Residue,
and GCD, and it resolves the question of Fractionality.

-1-

Division Example

These two quotients (left and right) occur with non-commutative
numbers only.

They come into play in the following somewhat counterintuitive
example: suppose a and b are Quaternions and c←a×b, and we're
using the default of the right quotient for the Division primitive. The
quotient c÷b is reliably a because

c÷b ←→ (a×b)÷b
 ←→ ((a×b)×+b)÷b×+b
 ←→ (a×b×+b)÷b×+b
 ←→ a

and because b×+b is a real number, and multiplication of Quaternions
is associative.

However, c÷a is not always b because

c÷a ←→ (a×b)÷a
 ←→ ((a×b)×+a)÷a×+a
 ←/→ ((b×a)×+a)÷a×+a

and because Quaternion multiplication is not commutative. Instead,
the left quotient of c÷a is

c÷a ←→ (a×b)÷a
 ←→ ((+a)×a×b)÷(+a)×a
 ←→ (((+a)×a)×b)÷(+a)×a
 ←→ b

because (+a)×a is a real number, and multiplication of Quaternions
is associative. This indicates that the choice of right or left quotients is

-2-

one over which the programmer (rather than the system implementor)
should have direct control without having to write out the explicit forms
such as in the examples above.

Division Quotients
In order to deal with the choice of left or right quotients when dividing
non-commutative numbers, a new system variable ⎕LR is introduced.
This variable may assume the value of 'r' or 'l' to indicate that the
right (resp. left) quotient should be returned from division. The default
value is 'r'.

Correspondingly, the Variant operator (⍠) has been extended to allow
⎕LR to be specified in a shorthand form on selected primitive functions
and in a longhand form on all primitive functions as well as user
defined functions and operators, anonymous functions, and derived
functions. For example (in shorthand form),

 (a8 b8)←<?2 8⍴20
 c8←a8×b8
 b8=c8÷⍠'l' a8
1
 a8=c8÷⍠'r' b8
1

or when used on a user-defined function/operator, anonymous, or
derived function (in longhand form)

 {⎕LR}⍠('LR' 'l')
l
 {⎕LR}⍠('LR' 'r')
r

Floor Primitive
From the conclusion of the earlier paper “Hypercomplex GCD”1, the

-3-

only Floor function that satisfies Fractionality on Quaternions is the
one defined by Hurwitz and then only with its domain (and range)
extended to Hurwitz Quaternions. Because Floor on Octonions does
not have Fractionality, this primitive is not defined on Octonions.

Z←UF R;F T
⍝ ⌊R for Hypercomplex numbers
⍝ using Hurwitz's Floor function
⍝ returning the nearest Hurwitzian (half-)integer
⍝ Scalar R
⍝ Sensitive to ⎕CT
F←>R ⋄ Z←<⌊F+(1+⊤F)÷2
F←⌊F ⋄ T←< F+(1+⊤F)÷2
:if (|R-Z)>|R-T ⋄ Z←T ⋄ :end

Implementation Note
In the Alpha version of NARS2000, the two definitions of Floor are
distinguished by the value of ⎕FEATURE[3]. If that value is 0, then
McDonnell's version of Floor is used for Complex numbers on Floor,
Ceiling, Residue, GCD, LCM, Encode, and Base Value, and
Quaternions on Floor, Ceiling, Residue, GCD, LCM, Encode, and
Base Value all signal a DOMAIN ERROR. If that value is 1, then
Hurwitz's version of Floor, Ceiling, Residue, GCD, LCM, Encode, and
Base Value is used for Complex and Quaternion numbers.

Residue
The Residue function (L|R) is defined on Quaternions by splitting it
into two special cases (L=0 1) and one general case (none of the
above), a naïve version of which is as follows:

-4-

Z←L UR1 R
⍝ L|R for Hypercomplex numbers
⍝ using Hurwitz's Floor function
⍝ Scalar L and R
⍝ Sensitive to ⎕CT
→(L(=⍠0) 0 1)/L0 L1 ⍝ a.k.a. L=0 1 with ⎕CT←0
Z←L×1∇R÷L ⋄ →0
L0:Z←R ⋄ →0
L1:Z←R-UF R

This version works perfectly fine on commutative numbers, however it
has problems on non-commutative numbers depending upon the
setting of ⎕LR – for example,

 a←1i2x ⋄ b←1i5j2x
 ⎕LR←'l' ⋄ ⎕←c1L←a UR1 b
¯1r2i¯1r2j1r2k¯1r2
 ⎕LR←'r' ⋄ ⎕←c1R←a UR1 b
¯1r2i¯1r2j¯7r10k1r10
 ⎕LR←'l' ⋄ a UR1 b-c1L
0
 ⎕LR←'r' ⋄ a UR1 b-c1R
0j24r25k¯7r25

where c1R is clearly a bogus result as it is not even a Quaternion
Integer, not to mention the fact that it doesn't satisfy the most basic
identity of Residue (0=a|b-a|b). Note that the arguments to this
function (and the ones below) are all expressed as Rational numbers3
(e.g., 3x or 1r3) so as to avoid inexact floating point results due to
round off error in the division.

The problem with UR1 and ⎕LR←'r' lies with the statement
Z←L×1∇R÷L where we divide by L on one side returning a right
quotient and multiply by L on the left side. To be consistent, we need
to multiply on the same side as the quotient we get from division, that

-5-

is, we need to use all right divisions and multiplications or all left
divisions and multiplications. In other words, we need to make this
statement sensitive to ⎕LR. One way to accomplish this is as follows:

Z←L UR R
⍝ L|R for Hypercomplex numbers
⍝ using Hurwitz's Floor function
⍝ Scalar L and R
⍝ Sensitive to ⎕CT and ⎕LR
→(L(=⍠0) 0 1)/L0 L1 ⍝ a.k.a. L=0 1 with ⎕CT←0
:select ⎕LR
 :case 'l' ⋄ Z←L× 1∇R÷L ⋄ →0 ⍝ ∇ is recursive call
 :case 'r' ⋄ Z←L×⍨1∇R÷L ⋄ →0 ⍝ ⍨ is Commute oper
:end
L0:Z←R ⋄ →0
L1:Z←R-UF R

This definition supersedes the one from “Hypercomplex GCD”.

Essentially, this provides two results from Residue depending upon
the value of ⎕LR, one for left quotients and one for right quotients:

 a←1i2x ⋄ b←1i5j2x
 ⎕LR←'l' ⋄ ⎕←c2L←a UR b
¯1r2i¯1r2j1r2k¯1r2
 ⎕LR←'r' ⋄ ⎕←c2R←a UR b
¯1r2i¯1r2j1r2k1r2

Also, these results check out as valid residues:

 ⎕LR←'l' ⋄ a UR b-c2L
0
 ⎕LR←'r' ⋄ a UR b-c2R
0

-6-

The function UR is implemented in NARS2000 as the Residue
primitive function on Quaternions. This primitive is not defined on
Octonions because it is defined in terms of the Floor primitive which is
not defined on Octonions.

Encode

This primitive function (L⊤R) also has a naïve definition on
Hypercomplex numbers expressed as an APL function as follows:

Z←L UE1 R;⎕CT I
⍝ L⊤R for Hypercomplex numbers
⍝ using Hurwitz's Residue function
⍝ Scalar/Vector L, Scalar R
⍝ Sensitive to ⎕LR
⎕CT←0
L←1/L ⋄ Z←(⍴L)⍴0
:for I :in ⌽⍳⍴L
 Z[I]←L[I] UR R
 :leaveif (L[I]=0)∨R=Z[I]
 R←(R-Z[I])÷L[I]
:end

For example, using randomly chosen Quaternions:

 ⎕←L←0,<?5 4⍴10x
0 3i4j2k5 9i10j4k7 4i1j9k9 1i4j6k5 8i7j7k4
 ⎕←R←<?4⍴50x
8i10j30k40
 ⎕LR←'r' ⋄ ⎕←ZR←L UE1 R
0 0 0 0 3i1k2 ¯1i¯5j¯1k5

Note that we prepend a zero to L so as to be able to invert the
function.

-7-

This algorithm uses two primitives (Residue and Division) sensitive to
⎕LR. However, trying the other combinations of one'l' and the other
'r' in either order as Variant operator operands to those two
primitives yields values that are not Hurwitzian Quaternions. The
combination of both primitives calculated with left quotients does yield
an integral result:

 ⎕LR←'l' ⋄ ⎕←ZL←L UE1 R
0 0 0 0 3i¯1j2k1 ¯5i¯2j4k¯1

Using the Base Value primitive to convert these two results back into
scalars depends on how one defines Base Value. For example, if
Base Value is defined as follows:

 WR←×/¨(⌽-0..¯1+⍴1/L)↑¨⊂L
 R=ZR+.×WR
1

or if Base Value is defined as follows:

 WL←⌽1,×\⌽1↓L
 R=WL+.×ZL
1

Note the switched arguments between the two examples.

While the second definition looks cleaner, it doesn't represent how one
normally thinks of constructing the weighting vector for Base Value.
Essentially, in the definition of the weighting vector WR, for (say) a
three-element L, its values are defined as follows:

(×/L[1 2 3]),(×/L[2 3]),L[3],1

whereas the corresponding weighting vector WL is defined as follows:

-8-

(×/L[3 2 1]),(×/L[3 2]),L[3],1

If multiplication in this context were commutative, these two weighting
vectors would be the same, but it is not. As can be seen, the
weighting vector WR multiplies the values in L in the correct order as
they are encountered while scanning L from right to left, whereas WL
reverses their order before multiplying them which rules it out as a
definition of Base Value.

Thus, Base Value is a right quotient primitive function only.

If there's only one way to define the Base Value primitive (with
⎕LR←'r'), there is only one way to define the Encode primitive (with
⎕LR←'r). This corresponds to the following algorithm:

Z←L UE R;⎕CT ⎕LR I
⍝ L⊤R for Hypercomplex numbers
⍝ using Hurwitz's Residue function
⍝ Scalar/Vector L, Scalar R
⎕CT←0 ⋄ ⎕LR←'r'
L←1/L ⋄ Z←(⍴L)⍴0
:for I :in ⌽⍳⍴L
 Z[I]←L[I] UR R
 :leaveif (L[I]=0)∨R=Z[I]
 R←(R-Z[I])÷L[I]
:end

The function UE is implemented in NARS2000 as the Encode primitive
function on Quaternions. This primitive is not defined on Octonions
because it is defined in terms of the Residue primitive which is not
defined on Octonions.

-9-

Base Value

In order to enable the identity R≡(0,L)⊥(0,L)⊤R, care must be
taken as to how this primitive calculates its result. In particular, its
weighting vector must be calculated as described above and the
multiplication with the value in the right argument with the weighting
vector from the left argument must be done with the right argument on
the left and the weighting vector on the right.

Z←L UB R;W
⍝ L⊥R for Hypercomplex numbers
⍝ Scalar/Vector L, Scalar R
W←×/¨(⌽-0..¯1+⍴1/L)↑¨⊂L
Z←R+.×W

The function UB is implemented in NARS2000 as the Base Value
primitive function on Quaternions. This primitive is not defined on
Octonions because the inverse function Encode is defined in terms of
the Residue primitive which is not defined on Octonions.

GCD

Greatest Common Divisor on Quaternions is defined in
“Hypercomplex GCD” as follows:

-10-

Z←L UG R;T ⎕CT
⍝ L∨R for Hypercomplex numbers
⍝ using Hurwitz's Residue function
⍝ Scalar L and R
⍝ Sensitive to ⎕LR
⎕CT←1E¯10 ⍝ FP numbers only
:repeat ⍝ Euclidean Algorithm
 T←L
 L←L UR R
 :Assert (|L)<|T
 R←T
:until (|L)≤4E¯15 ⍝ Again, FP numbers only
⍝ Rotate R into the first quadrant
⍝ or first two bi-quadrants
Z←rotateGCD R

The GCD function satisfies the following identities on commutative
and non-commutative numbers (with IsHalfInt←{∨⌿∧/0 1∘.=2|
2×>⍵}):

0=L∨R|L
0=L∨R|R
IsHalfInt L÷L∨R
IsHalfInt R÷L∨R

The function UG is implemented in NARS2000 as the GCD primitive
function on Quaternions. This primitive is not defined on Octonions
because it is defined in terms of the Residue primitive which is not
defined on Octonions.

LCM

The Least Common Multiple primitive (L∧R) is defined as (L×R)÷L∨R.

-11-

The LCM function satisfies the following identities on commutative
numbers:

0=L|L∧R
0=R|L∧R
IsHalfInt (L∧R)÷L
IsHalfInt (L∧R)÷R

but because Residue and Division are sensitive to the value of ⎕LR,
so are these identities, and in a complicated way. In particular, if the
LCM is calculated with ⎕LR←'r', the first and third identities are valid
with ⎕LR←'l', and if the LCM is calculated with ⎕LR←'l', the second
and fourth are valid with ⎕LR←'r'.

That is,

⎕LR←'r' ⋄ Z←L∧R
⎕LR←'l' ⋄ 0=L|Z
⎕LR←'l' ⋄ IsHalfInt Z÷L

⎕LR←'l' ⋄ Z←L∧R
⎕LR←'r' ⋄ 0=R|Z
⎕LR←'r' ⋄ IsHalfInt Z÷R

The corresponding function is

Z←L UL R
⍝ L∧R for Hypercomplex numbers
⍝ using Hurwitz's GCD function
⍝ Scalar L and R
⍝ Sensitive to ⎕LR
Z←(L×R)÷L UG R

The function UL is implemented in NARS2000 as the LCM primitive
function on Quaternions. This primitive is not defined on Octonions

-12-

because it is defined in terms of the GCD primitive which is not
defined on Octonions.

Conclusion

Division Quotients come into play not just with Division but also with
other primitives whose definition uses Division either directly or
indirectly. The system var ⎕LR is introduced so as to enable the
programmer to control the choice of such quotients and results. The
programmer needs to take care when using the results of primitive
functions sensitive to ⎕LR.

Encode and Base Value are right quotient primitives only. GCD, LCM,
and Residue are sensitive to the value of ⎕LR and in general they
each produce different results depending upon that system variable.

Online Version

This paper is an ongoing effort and can be out-of-date the next day.
To find the most recent version, goto http://sudleyplace.com/APL / and
look for the title of this paper on that page. Related papers such as
“Hypercomplex Notation in APL”4, “Hypercomplex GCD in APL”1,
“Hypercomplex Numbers in APL”2 as well as “Rational & Variable-
precision Floating Point Numbers”3 may be found in the same place.

Executable Version

All of the above APL functions may be executed in NARS2000, an
experimental APL interpreter available for free as Open Source
software.

The latest released version of the NARS2000 software may be found
in http://www.nars2000.org/download/ in either 32- or 64-bit versions.

-13-

http://sudleyplace.com/APL
http://www.nars2000.org/download/

This software runs natively under Microsoft Windows XP or later as
well as any Linux or Mac OS version which supports Wine (32-bit
only) which acts as a translation layer.

The choice of which Floor function to invoke on Hypercomplex
numbers is under user-control. This choice applies not only to the
Floor primitive, but also all other primitive functions directly of
indirectly sensitive to Floor. NARS2000 uses McDonnell's Floor
function when ⎕FEATURE[3]←0 and Hurwitz's Floor function when
⎕FEATURE[3]←1.

When using McDonnell's Floor function, all primitives that depend on
Floor on Quaternions signal a DOMAIN ERROR. Only when using
Hurwitz's Floor function does the system produce valid results.

References
1. “Hypercomplex GCD in APL”,

http://www.sudleyplace.com/APL/HyperComplex GCD in APL.pdf

2. Hypercomplex Numbers in APL”,
http://www.sudleyplace.com/APL/HyperComplex Number s in
APL.pdf

3. “Rational & Variable-precision Floating Point Numbers”,
http://www.sudleyplace.com/APL/Rational & Variable-Precision
FP.pdf

4. Hypercomplex Notation in APL”,
http://www.sudleyplace.com/APL/HyperComplex N otation in
APL.pdf

-14-

http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/Rational%20&%20Variable-Precision%20FP.pdf
http://www.sudleyplace.com/APL/Rational%20&%20Variable-Precision%20FP.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20GCD%20in%20APL.pdf

