
Hypercomplex Numbers
in APL
Bob Smith

Sudley Place Software
Originally Written

14 Sep 2015
Updated

11 Apr 2018

“There are exactly four normed division algebras: the real numbers
(ℝ), complex numbers (ℂ), quaternions (ℍ), and octonions (�). The
real numbers are the dependable breadwinner of the family, the
complete ordered field we all rely on. The complex numbers are a
slightly flashier but still respectable younger brother: not ordered, but
algebraically complete. The quaternions, being noncommutative, are
the eccentric cousin who is shunned at important family gatherings.
But the octonions are the crazy old uncle nobody lets out of the attic:
they are nonassociative.”

John Baez, The Octonions1

Introduction
Three new internal number types are made available to APL users to
round out the set of four starting with the Real numbers. Complex
numbers have been implemented in APL interpreters for over thirty
years, but this is the first time for Quaternions and Octonions in an
APL interpreter (but not in an APL compiler2). Also as a first, these
new number types may have any one of four different types of
coefficients as opposed to the typical single coefficient type of fixed

-1-

http://math.ucr.edu/home/baez/octonions/octonions.html

precision floating point.

Overall, this feature adds twelve new datatypes to the language.

Primitive functions are extended in a natural way to accommodate the
new numbers. Four new primitive functions, one new system function,
and one new system variable are defined.

Nomenclature
CHO: This acronym references the collection of Complex (ℂ),
Quaternion (ℍ), and Octonion (�) numbers. You might expect it to be
abbreviated CQO, but by the time Quaternions came along (18435), Q
was already used to refer to the Rational numbers. You might think of
using R to refer to Rationals, but instead Q was chosen (for Quotients)
because R was already used to refer to Real numbers. H was chosen
to honor the discoverer of Quaternions, Sir William Rowan Hamilton.
I'm glad we cleared that up.

Dimension vs. dimension: The term dimension in APL refers to an
array coordinate; first dimension, last dimension, etc. That same term
is also used by mathematicians concerning CHO numbers to indicate
the number of coordinates of the number, Real numbers are 1-
dimensional, Complex numbers 2-dimensional, Quaternions 4-
dimensional, etc.

I use the same word in different contexts, and I expect that in nearly
every case, the context in which the word is used will be obvious and
will clarify which meaning is intended.

Bi-quadrants and bi-octants: Complex numbers are 2-dimensional
and are graphed in the plane with its two axes dividing the plane into
four (=22) quadrants. Quaternions are 4-dimensional and divide space

-2-

into 16 (=24) “corners” which I'm calling bi-quadrants as in 24.
Similarly, I'm calling the 256 (=28) Octonion corners bi-octants.

Complex Numbers
The input and output notation for Complex numbers uses infix notation
with i or J as a separator. For example, 2i3 and 2J3 represent the
same number. Following Iverson's lead in J, two additional input
notations (for Complex numbers only) allow you to use polar form as in
1ad90 and 1ar2 which describe the radius and angle in either
degrees (ad) or radians (ar). The display form of either input notation
uses either i or J depending upon a program-wide User Preference.
By default, an imaginary part with value zero is omitted on output, but
a program-wide User Preference allows it to be shown.

The infix notation shown for CHO numbers is only one way to enter
such numbers. Jacob Brickman9 has suggested an alternative input
and output notation for CHO numbers which uses postfix. For
example, 0i1 may be written more succinctly as 1i, and in general,
Complex numbers are written as 1s2i, Quaternions as 1s2i3j4k,
and Octonions as 1s2i3j4k5l6ij7jk8kl. If any part is zero (e.g.,
the 0s in 0s1i), it may be elided.

The coefficients of a CHO number may be any one of four datatypes,
as long as all the coefficients come from one of the following four
datatypes:

 Fixed precision (64-bit) integer (a.k.a. Gaussian integers)
 Fixed precision (64-bit) floating point (the typical coefficient)
 Multiple precision integer/rational
 Multiple precision floating point

-3-

For example,

1i2 Complex fixed precision integer
1i2.5 Complex fixed precision floating point
1i5r2 Complex multiple precision integer/rational
1i2.5v Complex multiple precision floating point

Properties
 Addition and subtraction are performed element-wise (using

mathematical notation for a moment)
p←a1+b1i
q←a2+b2i
p + q ←→ (a1+b1) + (b1+b2)i

 Addition is commutative
p + q ←→ q + p

 Addition is associative
p + q + r ←→ p + (q + r) ←→ (p + q) + r

 Multiplication distributes over addition
p × q + r ←→ p × (q + r) ←→ (p × q) + (p × r)

 Multiplication is associative
p × q × r ←→ p × (q × r) ←→ (p × q) × r

 Multiplication is defined by Cayley-Dickson3 as in if a, b, c, and d
are Real numbers and (a,b) as well as (c,d) are treated as
the real and imaginary parts of Complex numbers, then
(a,b) × (c,d) ←→ (a×c - d×b, d×a + b×c)

 Multiplication is commutative
p × q ←→ q × p

 0 ←→ 0i0 is the identity element for addition.
 1 ←→ 1i0 is the identity element for multiplication.
 The Conjugate of a Complex number negates the imaginary part,

as in +1i2 ←→ 1i¯2, which means that conjugate is self-

-4-

inverse, i.e., ++q ←→ q. Expanding the above notation for
multiplying two Complex numbers as per Cayley-Dickson, it's
easy to see that the product of a number with its conjugate
(q×+q) is a real number.

 The quotient of two Complex numbers p and q where q≠0 is
achieved by multiplying the numerator and denominator both by
the conjugate of the denominator as in (p×+q)÷q×+q where
q×+q is a real number.

Quaternion Numbers
The input and output notation for Quaternions uses infix notation with
i, j, and k as separators just as i or J is used in complex numbers.

For example. 1i2j3k4. One or more imaginary parts may be elided

on input if zero, as in 1j3 ←→ 1i0j3k0. By default, imaginary parts

with value zero are omitted on output, but a program-wide User
Preference allows them to be shown.

As with Complex numbers, the coefficients of Quaternions may be any
one of the same four datatypes.

Properties
 Addition and subtraction are performed element-wise (using

mathematical notation for a moment)
p←a1+b1i+c1j+d1k
q←a2+b2i+c2j+d2k
p + q ←→ (a1+b1) + (b1+b2)i + (c1+c2)j + (d1+d2)k

 Addition is commutative
p + q ←→ q + p

 Addition is associative
p + q + r ←→ p + (q + r) ←→ (p + q) + r

-5-

 Multiplication distributes over addition
p × q + r ←→ p × (q + r) ←→ (p × q) + (p × r)

 Multiplication is associative
p × q × r ←→ p × (q × r) ←→ (p × q) × r

 Multiplication is defined by Cayley-Dickson3 as in if a, b, c, and d
are Complex numbers and (a,b) as well as (c,d) represent
Quaternions, then
(a,b) × (c,d) ←→ (a×c - d´×b, d×a + b×c´)
where d´ and c´ are the Conjugates of d and c respectively.

 N.B. in general, multiplication is NOT commutative, that is
p × q ←/→ q × p

 0 ←→ 0i0j0k0 is the identity element for addition.
 1 ←→ 1i0j0k0 is the identity element for multiplication.
 The Conjugate of a Quaternion negates all of the imaginary parts,

as in +1i2j3k4 ←→ 1i¯2j¯3k¯4, which means that conjugate
is self-inverse, i.e., ++q ←→ q. Moreover, like the inverse of the
product of matrices, the conjugate of a product is the product of
the conjugates in reverse order, i.e., +p×q ←→ (+q)×+p.
Consequently, the product of a Quaternion with its conjugate
(q×+q) is a real number because the conjugate of that product
+q×+q ←→ (++q)×+q ←→ q×+q is itself, which means that the
imaginary part must be zero.

 The quotient (a.k.a. right quotient) of two Quaternions p and q
where q≠0 is achieved by multiplying the numerator and
denominator both by the conjugate of the denominator as in
(p×+q)÷q×+q where q×+q is a real number. Because
multiplication of Quaternions is not commutative, there is another
quotient (a.k.a. left quotient) defined as ((+q)×p)÷q×+q and is,
in general, different from the right quotient. Note that q×+q, and
(+q)×q are the same real numbers as per the discussion above
on Complex number conjugates.

-6-

Applications
From the Wikipedia article5 on quaternions, “..., quaternions are used
in computer graphics, computer vision, robotics, control theory, signal
processing, attitude control, physics, bioinformatics, molecular
dynamics, computer simulations, and orbital mechanics. For example,
it is common for the attitude-control systems of spacecraft to be
commanded in terms of quaternions. Quaternions have received
another boost from number theory because of their relationships with
the quadratic forms”.

Octonion Numbers
The notation for Octonions uses infix notation with i, j, k, l, ij, jk,

kl as separators. For example 1i2j3k4l5ij6jk7kl8. As with

Quaternions, one or more imaginary parts may be elided on input if
zero, as in 1j3kl4 ←→ 1i0j3k0l0ij0jk0kl4. By default,

imaginary parts with value zero are omitted in output, but a program-
wide User Preference allows them to be shown.

As with Complex numbers and Quaternions, the coefficients of
Octonions may be any of the same four datatypes.

Properties
 Addition and subtraction are performed element-wise (using

mathematical notation for a moment)
p←a1+b1i+c1j+d1k+e1l+f1ij+g1jk+h1kl
q←a2+b2i+c2j+d2k+e2l+f2ij+g2jk+h2kl
p + q ←→ (a1+a2) + (b1+b2)i + (c1+c2)j + (d1+d2)k +
 (e1+e2)l + (f1+f2)ij + (g1+g2)jk + (h1+h2)kl

 Addition is commutative

-7-

https://en.wikipedia.org/wiki/Quadratic_form
https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Orbital_mechanics
https://en.wikipedia.org/wiki/Computer_simulation
https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Attitude_control
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Robotics
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Quaternions

p + q ←→ q + p
 Addition is associative
p + q + r ←→ p + (q + r) ←→ (p + q) + r

 Multiplication distributes over addition
p × q + r ←→ p × (q + r) ←→ (p × q) + (p × r)

 N.B. multiplication is NOT associative, that is
p × q × r ←→ p × (q × r) ←/→ (p × q) × r

 Multiplication is defined by Cayley-Dickson3 as in if a, b, c, and d
are Quaternions and (a,b) as well as (c,d) represent
Octonions, then
(a,b) × (c,d) ←→ (a×c - d´×b, d×a + b×c´)
where d´ and c´ are the Conjugates of d and c respectively.

 N.B. multiplication is NOT commutative, that is
p × q ←/→ q × p

 0 ←→ 0i0j0k0l0ij0jk0kl0 is the identity element for
addition.

 1 ←→ 1i0j0k0l0ij0jk0kl0 is the identity element for
multiplication.

 The Conjugate of an Octonion negates all of the imaginary parts,
as in +1i2j3k4l5ij6jk7kl8 ←→
1i¯2j¯3k¯4l¯5ij¯6jk¯7kl¯8, which means that conjugate is
self-inverse, i.e., ++q ←→ q. Moreover, like the inverse of the
product of matrices, the conjugate of a product is the product of
the conjugates in reverse order, i.e., +p×q ←→ (+q)×+p. The
product of a number with its conjugate (q×+q) is a real number.

 The quotient (a.k.a. right quotient) of two Octonions p and q
where q≠0 is achieved by multiplying the numerator and
denominator both by the conjugate of the denominator as in
(p×+q)÷q×+q where q×+q is a real number. Because
multiplication of Octonions is not commutative, there is another
quotient (a.k.a. left quotient) defined as ((+q)×p)÷q×+q and is,
in general, different from the right quotient. Note that q×+q, and
(+q)×q are the same real numbers as per the discussion above

-8-

on Complex number conjugates.

Applications
From the Wikipedia article4 on octonions, “Octonions are not as well
known as the quaternions and complex numbers, which are much
more widely studied and used. Despite this they have some interesting
properties and are related to a number of exceptional structures in
mathematics, among them the exceptional Lie groups. Additionally,
octonions have applications in fields such as string theory, special
relativity, and quantum logic”.

Division Quotients
In order to deal with the choice of left or right quotients when dividing
non-commutative numbers (i.e., Quaternions and Octonions), a new
system variable ⎕LR is introduced. This variable may assume the
value of 'r' or 'l' to indicate that the right (resp. left) quotient should
be returned from division. The default value is 'r'.

Correspondingly, the Variant operator has been extended to allow ⎕LR
to be specified locally on selected primitive functions as well as all
user defined functions and operators, anonymous functions, and
derived functions.

For more details on this topic, see the paper “Hypercomplex Quotients
in APL”12.

Data Conversion
At times it is convenient to be able to manipulate the individual
coefficients of a CHO number. Rather than extend the left argument of

-9-

https://en.wikipedia.org/wiki/Quantum_logic
https://en.wikipedia.org/wiki/Special_relativity
https://en.wikipedia.org/wiki/Special_relativity
https://en.wikipedia.org/wiki/String_theory
https://en.wikipedia.org/wiki/Simple_Lie_group#Exceptional_cases
https://en.wikipedia.org/wiki/Octonions

the circle function by six more (recall that 9○R and 11○R return the real
and (first) imaginary part), I decided to define a system function ⎕DC
for that purpose. In its monadic form, the function splits out the
coefficients of a CHO number into a new column dimension,
preserving the datatype of the coefficients OR it converts a non-CHO
argument into the corresponding CHO number using the values along
the column coordinate as the coefficients (presuming the number of
columns of R is 1, 2, 4, or 8). This duality w.r.t. the right argument
makes this function self-inverse. For example,

 ⎕DC ⍳4
1i2j3k4
 ⎕DC 1i2j3k4
1 2 3 4

This conversion function has been superseded by the Condense and
Dilate primitive functions (see below).

The dyadic version of this function converts the coefficients of a Real
or CHO right argument to the type specified by the character scalar
('ifrv') left argument. The CHO dimension is preserved from the
right argument to the result, just the type of the coefficients is changed.
For example,

 'r' ⎕DC 1.5i1 2.5i3.5
3r2i1 5r2i7r2

Type Promotion
As is done everywhere in APL, datatypes are fungible, e.g., the
reciprocal of an integer produces a fixed precision floating point
number without bothering the end user who just want results.
Similarly, CHO numbers promote in the same way as do the one-

-10-

dimensional numbers, I → F, R → V, etc. Moreover, the interpreter
preserves the argument datatype whenever possible such as with
Gaussian integers and rationals:

 ÷2i1r3
18r37i¯3r37
 2i1r3*2
35r9i4r3

Dimension Demotion
At the moment, CHO numbers are not subject to type demotion,
although, say, CHO float could demote to CHO integer. Instead, the
dimension of a CHO number resulting from certain functions may be
lowered if enough of the trailing imaginary parts are zero. For
example, given a CHO floating point R, 12○R returns an angle as a
single floating point value. Without Dimension Demotion, it would
return a result of the same CHO dimension as R with all imaginary
coordinates zero. With Dimension Demotion, because the result is
actually a real number, the result is demoted from multi-dimensional
floating point to one-dimensional floating point, and similarly if R is a
multi-dimensional multiple precision floating point number, the result of
12○R is a one-dimensional multiple precision floating point number.

At the moment, the only function whose results are subject to
dimension demotion is dyadic Circle (L○R).

Integer Units
An integer unit of one of the CHO number systems is a value whose
coefficients are integers and whose norm is 1. Thus there are four
integer units of Complex numbers, eight for Quaternions, and sixteen

-11-

for Octonions.

A compact functional form to generate integer units is as follows

uf←<∘(⊢⍪-)∘(∘.=⍨)∘⍳

or as an anonymous function without the operator glue

uf←{<(⊢⍪-)∘.=⍨⍳⍵}
 uf 1
1 ¯1
 uf 2
1 0i1 ¯1 0i¯1
 uf 4
1 0i1 0j1 0k1 ¯1 0i¯1 0j¯1 0k¯1
 uf 8
1 0i1 0j1 0k1 0l1 0ij1 0jk1 0kl1 ¯1 0i¯1 0j¯1 0k¯1
 0l¯1 0ij¯1 0jk¯1 0kl¯1

These values are useful for rotating a CHO by a multiple of 90º as is
needed for GCD.

Primitive Functions
Generally, the definitions of primitive functions follow the ones for
Complex numbers with the obvious extension to 4- and 8-dimensional
numbers. For an explanation of the Complex number definitions of the
primitive functions below, see Eugene McDonnell's paper “Complex
Numbers” SATN 406.

Conjugate
The conjugate primitive +R negates all of the imaginary coordinates.

-12-

This has the effect of reflecting the number about the real axis, the
only coordinate that doesn't change its sign. This means that
conjugate is self-inverse, i.e., ++q ←→ q. Because the conjugate of a
real number is itself, a test for realness is R≡+R. The effect of
multiplying a CHO number by its conjugate is to produce a real
number which is the sum of the squares of its coefficients.

Magnitude
The magnitude (a.k.a. norm) primitive |R calculates the Pythagorean
distance from the origin to the point regardless of its dimension (1, 2,
4, or 8). This means that it computes the square root of the sum of the
squares of its coefficients. In other words, |R ←→ √R×+R ←→
√+/(>R)*2. For example,

|3i4 ←→ √+/3 4*2 ←→ √+/9 16 ←→ √25 ←→ 5

Direction
The direction primitive ×R divides the number by its magnitude, except
for ×0 which is 0. Essentially, this function maps the number to the
point where the line between the origin and the number intersects the
unit 1-, 2-, 4-, or 8-dimensional sphere, resulting in a number with
magnitude 0 (for ×0) or 1 (for all other numbers). In other words, for
R≠0, ×R ←→ R÷|R. For example,

×3i4 ←→ 3i4÷5 ←→ 0.6i0.8

Floor, Ceiling, Residue and Encode
These functions on Complex Numbers are defined as in the paper
“Complex Floor”11 by Eugene McDonnell. For more details on this
topic see the paper “Hypercomplex GCD in APL”13.

-13-

GCD and LCM
As discussed in Doug Forkes'10 APL81 paper, the GCD function (L∨R)
may be defined by the Euclidean algorithm in terms of the residue
function and may use either the McDonnell or Hurwitz definition of
residue. The LCM function (L∧R) is defined in terms of GCD as in L∧R
←→ (L×R)÷L∨R ←→ L(×÷∨)R. For more details on this topic see the
paper “Hypercomplex GCD in APL”13.

Dimension
In order to detect the dimension of a CHO number, one could use >R
and check the number of columns, but I thought it might be nice to do
that more easily and more primitively. Instead, I co-opted the primitive
function monadic equal (=R) to return the integer scalar (1, 2, 4, or 8)
which is the dimension of R.

Squared Norm
The squared norm primitive returns the square of the magnitude
function, but the squared norm primitive is sometimes useful in itself.
To that end, ≠R returns R×+R which is another way of calculating
squared norm, a.k.a. the sum of the squares of the coefficients. One
value of this primitive is that the datatype of the right argument is
preserved, but reduced from the original CHO dimension (1, 2, 4, or 8)
to 1. For example,

≠3i4 ←→ 25

-14-

Dilate and Condense
One way to manage the coefficients of Hypercomplex numbers uses
the left and right carets as monadic functions. The Condense function
(<R) takes an array whose number of columns is 1, 2, 4, or 8 and
creates a new array whose shape is ¯1↓⍴R and whose last coordinate
is filled with Hypercomplex numbers of the appropriate dimension. For
example,

 <2 4⍴⍳8
1i2j3k4 5i6j7k8

The Dilate function (>R) reverses the effect of the Condense function
and creates a new array whose shape is (⍴R),=R, where =R returns
an integer scalar of the Hypercomplex dimension (1, 2, 4, or 8) of R:

 ><2 4⍴⍳8
1 2 3 4
5 6 7 8

This feature was suggested by David A. Rabenhorst.

Shriek Functions
These functions return results on Real, Complex, and Quaternion
Fixed-Precision numbers and Real Multiple-Precision numbers only;
otherwise, they signal a DOMAIN ERROR on all types of Octonions and
a NONCE ERROR on Complex and Quaternion Multiple-Precision
numbers.

Extending these functions to the remaining datatypes requires
calculating the Complex-valued Eigenvalues and Eigenvectors of
certain 2×2 or 4×4 Real non-symmetric matrices which in turn requires
writing my own Multiple-Precision routines for calculating Eigenvalues
and Eigenvectors.

-15-

Choices
 The fact that Quaternions and Octonions are not commutative

means that we must be careful when implementing definitions
that include multiplying numbers. For example, the EAS defines
¯11○R ←→ 0J1×R, which needs to be taken literally because if
we switch the multiplication arguments as in R×0J1 we get a
different answer.

 All of the other definitions in the Extended APL Standard that
involve multiplying numbers (I'm looking at you, circle functions),
should be considered written in stone.

 Also, as multiplication of Octonions isn't associative, the problem
there is even stickier. We must also be careful to write definitions
that are unambiguous w.r.t. multiplicative associativity where
Octonions are concerned.

 In general, many algorithms we take for granted need to be
examined closely. While I've implemented these algorithms in a
particular way, do not take them as how I think they should be
done. More thought needs to go into these choices through
discussion with other implementors such as Sam Sirlin whose
APLc compiler project2 already supports Quaternions and
Octonions. As an obvious example, how would you write GCD
and LCM algorithms if multiplication were neither commutative
nor associative? See this paper13 for one answer.

 As mentioned above, division in Quaternions and Octonions
involves a choice: right or left quotient? That is, in the result of
p÷q is the numerator p×+q or (+q)×p ? See this paper12 for one
answer.

 Multiplication of Quaternions and Octonions also involves a
choice. There are two (isomorphic) choices for multiplication of
Quaternions, boiling down to “Is 0i1×0j1 equal to 0k1 or

-16-

0k¯1 ?” Octonions are much worse as there are 480 different
(but also all isomorphic) multiplication tables. My approach was
to define multiplication for both types to use the Cayley-Dickson3
construction which made the choice (easy) for me.

Still To Do
In no particular order,

 Factorial and combinations on Multiple Precision Hypercomplex
numbers (perhaps using Lanczos's7 or Spouge's8 approximation
to the gamma function, or computing the Factorial of certain
Multiple Precision floating point matrices)

 Infinities
)IN and)OUT

Online Version
This paper is an ongoing effort and can be out-of-date the next day.
To find the most recent version, goto http://sudleyplace.com/APL / and
look for the title of this paper on that page.

Executable Version
The latest released version of the NARS2000 software may be found
in http://www.nars2000.org/download/ in either 32- or 64-bit versions.
This software runs natively under Microsoft Windows XP or later as
well as any Linux or Mac OS version which supports Wine (32-bit only)
which acts as a translation layer.

-17-

http://www.nars2000.org/download/
http://sudleyplace.com/APL

References

1. http://math.ucr.edu/home/baez/octonions/octonions.html
2. http://home.earthlink.net/~swsirlin/aplcc.html
3. https://en.wikipedia.org/wiki/Cayley-Dickson_construction
4. https://en.wikipedia.org/wiki/Octonion
5. https://en.wikipedia.org/wiki/Quaternion
6. http://www.jsoftware.com/papers/satn40.htm
7. https://en.wikipedia.org/wiki/Lanczos_approximation
8. https://en.wikipedia.org/wiki/Spouge's_approximation
9. Personal communication, 10 August 2015

10. http://dl.acm.org/citation.cfm?id=805343
11. http://www.jsoftware.com/papers/eem/complexfloor1.htm
12. “Hypercomplex Quotients in APL”

http://www.sudleyplace.com/APL/HyperComplex Quotient s in
APL.pdf

13. “Hypercomplex GCD in APL”
http://www.sudleyplace.com/APL/HyperComplex GCD in APL.pdf

-18-

http://www.sudleyplace.com/APL/HyperComplex%20GCD%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Quotients%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Quotients%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Quotients%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Quotients%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Quotients%20in%20APL.pdf
http://www.jsoftware.com/papers/eem/complexfloor1.htm
http://dl.acm.org/citation.cfm?id=805343
https://en.wikipedia.org/wiki/Spouge's_approximation
https://en.wikipedia.org/wiki/Lanczos_approximation
http://www.jsoftware.com/papers/satn40.htm
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Octonion
https://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
http://home.earthlink.net/~swsirlin/aplcc.html
http://math.ucr.edu/home/baez/octonions/octonions.html

