
Hypercomplex
Implementation

in APL
Bob Smith

Sudley Place Software
Originally Written

14 Sep 2015
Updated

11 Apr 2018

Introduction
In this paper I describe the nitty gritty details of implementing
Hypercomplex numbers in APL, typically a topic of interest to
developers only.

Prerequisite Reading
The paper “Hypercomplex Notation in APL”6 provides a summary of
the notation used in this paper for Hypercomplex numbers, and the
paper “Hypercomplex Numbers in APL”7 provides an overview of
Hypercomplex numbers in general.

Nomenclature
CHO: This acronym references the collection of Complex (ℂ),
Quaternion (ℍ), and Octonion (�) numbers. You might expect it to be
abbreviated CQO, but by the time Quaternions came along (18431), Q
was already used to refer to the Rational numbers. You might think of

-1-

using R to refer to Rationals, but instead Q was chosen (for Quotients)
because R was already used to refer to Real numbers. H was chosen
to honor the discoverer of Quaternions, Sir William Rowan Hamilton.
I'm glad we cleared that up.

Dimension vs. dimension: The term dimension in APL refers to an
array coordinate; first dimension, last dimension, etc. That same term
is also used by mathematicians concerning CHO numbers to indicate
the number of coordinates of the number, Real numbers are 1-
dimensional, Complex numbers 2-dimensional, Quaternions 4-
dimensional, etc.

I use the same word in different contexts, and I expect that in nearly
every case, the context in which the word is used will be obvious and
will clarify which meaning is intended.

Bi-quadrants and bi-octants: Complex numbers are 2-dimensional
and are graphed in the plane with its two axes dividing the plane into
four (=22) quadrants. Quaternions are 4-dimensional and divide space
into 16 (=24) “corners” which I'm calling bi-quadrants as in 24.
Similarly, I'm calling the 256 (=28) Octonion corners bi-octants.

Algorithms
Algorithms on Real and Complex numbers are plentiful, and when
coupled with various open source libraries yields:

 Fixed precision Real and Complex floating point support from
GSL

 Multiple precision Complex support from MPC
 Multiple precision integer/rational support from MPIR
 Multiple precision floating point support from MPFR

-2-

Algorithms on Quaternions and Octonions are extremely rare. Yet, to
my great surprise, I found a cache of Quaternion algorithms in Dave
Barber's excellent Quaternion Calculator2 written in Javascript. Not
only were these algorithms easily translated into C, but they were
trivially easy to generalize to Octonions – so trivial that in every case,
changing a 4 to an 8 was all that was necessary. Moreover, if I
needed a Complex number version of one of those algorithms, all I
had to do was change a 4 to a 2.

For the irrational and transcendental functions we need fixed and
multiple precision floating point algorithms which can then be
parametrized with not only the CHO argument, but also the CHO
dimension. In other words, for the irrational non-Real cases, we need
only two versions of these algorithms: one using fixed precision
floating point functions and one using multiple precision floating point
functions.

These algorithms filled in all of the non-trivial circle functions along
with exponentiation, power, square root, and log both natural and
based for fixed precision floating point support for HO and multiple
precision support for CHO. In practice, once you have powers of e
and natural logarithms, almost all of the trigonometric functions can be
defined in those terms, but having the algorithms already coded in
Javascript makes the process much simpler.

Eventually, I found another excellent source, good old invaluable A&S
(Abramowitz & Stegun4) sections 4.3.55-57, 4.4.37-39, 4.5.49-51 for
the formulae “... in Terms of Real and Imaginary Parts” of the
trigonometric functions. Little known facts: A&S was a consequence
of the Mathematical Tables Project3 of the WPA of President Franklin
Roosevelt. A&S is considered by some to be the most cited book in
the mathematical literature5 with an estimated 40,000 citations.

-3-

Interestingly, algorithms on Complex numbers are not very general –
those on Quaternions are best because the role of the imaginary
coefficients is exposed much more so than it is in the corresponding
Complex number algorithm. Usually, an algorithm for Complex
numbers has had all of the generality boiled and optimized out of it so
that it is no longer obvious how to generalize it to a higher dimensional
number.

For example, here's an algorithm for natural log on Quaternions from
Barber's Quaternion Calculator:

function logH (h, i, j, k)
{
 g = i*i + j*j + k*k;
 m = r_sqrt (h*h + g);
 g = r_sqrt (g);
 u = r_log (m);
 v = (g == 0) ? 0 : r_atan2 (g, h) / g;

 if ((h < 0) && (g == 0))
 r = Math.PI;
 else
 r = v*i;

 return (u, r, v*j, v*k);
}

As you can see, the log function takes in four numbers and returns
four numbers. Also, it's trivial to see how to extend this algorithm to
Octonions as well as contract it for Complex numbers because the role
of the imaginary coefficients is made clear. The corresponding
Complex number-only algorithm would have been simplified to the
point where you would have no idea of how to extend it.

-4-

Here is an APL function based on the above algorithm to calculate
natural logs on CHO numbers:

Z←log R;c g h m v
⍝ Log for Hypercomplex numbers
c←>R ⍝ Expand into its coefficients
h←1↑c ⍝ The real coefficient
m←√+/c*2 ⍝ Magnitude of R
g←√+/(1↓c)*2 ⍝ Magnitude of imaginary parts
Z←⍟m ⍝ Real part is always ⍟m
:if g=0 ⍝ Imaginary parts = 0
 :if h<0 ⍝ Real part < 0
 Z←Z,1p1 ⍝ Angle is +180 degrees
 :end
:else ⍝ Imaginary parts ≠ 0
 v←(12○h+g×0i1)÷g ⍝ 12○ = phase = atan2
 Z←Z,v×1↓c
:end
Z←<Z

The argument to log can be a scalar Real or CHO number with any of
the four possible types of coefficient. Note that CHO numbers are
handled as just a longer vector. The imaginary parts have equal
weight and are mixed together in an obvious way. The :if … :else
part of the control structure is there solely to handle principal values as
they are normally exceptional cases.

Euler's Identity
An interesting implementation challenge was confirming Euler's
Identity: *○1i ←→ ¯1. As soon as I had exponentiation working, I
tried that marvelous and elegant piece of code, as simple to state in
APL as it is in mathematical notation. I typed it and was greeted with

-5-

something like ¯1i¯2.612376911252165E¯19 – not the elegant
answer I was expecting.

The reason why took a while to ferret out. Eventually after checking
my C code carefully, I went back to APL and typed the equivalent
power series for exponentiation knowing that integer powers as a
special case were already implemented:

 N←0..40
 R←(○1i)*N
 Q←R÷!N
 +/Q
¯1

This was even more puzzling – I was delighted to see that result,
however, how could the APL code get the right answer, but the C code
could only get close? After scratching my head for a while, I
remembered an unpleasant and counter-intuitive truth about numerical
analysis – on floating point numbers, addition is not associative.
That is,

a+(b+c) ←/→ (a+b)+c.

My C code calculated the above quotient the same way as the APL
code, but the sum was calculated differently – in particular, in a
different order. My C code took the naïve approach and calculated
each term from low-order exponents on up, accumulating it per
iteration with no need for lengthy temporary storage. In other words,
the values in Q were added iteratively left to right as Q[1],
Q[1]+Q[2], (Q[1]+Q[2])+Q[3], etc. However, the APL sum was
calculated from right to left starting with Q[39]+Q[40]. In effect, the
APL reduction added the high-order small value terms first, eventually
working its way down to the low-order (but larger magnitude) terms.

-6-

The C code did just the opposite. The effect was that in the C code,
the small value terms were ignored as they were overwhelmed by the
large value terms by the time they were considered. That is, the C
code actually was calculating

 +/⌽R÷!N
¯1i¯2.612376911252165E¯19

Once I changed the C code to store all of the intermediate results and
then add them together from right to left, the expected answer from
Euler's Identity finally displayed

 *○1i
¯1

Internal Functions
In order to simplify coding of the CHO algorithms, I defined numerous
internal functions which could be used “inline” as it were – these
proved to be a great time saver. For example, the fixed precision
floating point CHO number implementation for 0○R ←→ √1-R*2 looks
like this (after a bit of editing for display purposes):

/* 1 - R * 2 */
Tmp = SubHC##N##F_RE (HC##N##Con1,

MulHC##N##F_RE (R.HC##N##F,
 R.HC##N##F));

/* sqrt (1 - R * 2) */
lpMemRes = SqrtHCxF_RE (Tmp, N)##suf##;

This code appears in a macro which implements this algorithm for all
CHO dimensions. As such, the ##N## represents the CHO dimension
which is inserted as text during pre-processing of the macro. For

-7-

example, the name MulHC##N##F_RE expands to MulHC2F_RE for
the Complex number version. The call to

SqrtHCxF_RE (Tmp, N)##suf##

is an example of where the dimension is an argument to the function
rather than there being separate 2-, 4-, and 8- dimensional versions as
is the case with MulHC##N##F_RE. Because that function handles all
dimensions, it can't return a result specific to the input dimension, so it
returns a result cast to the highest dimension (but filling in only as
many dimensions as needed) and the caller then pares it down to the
expected dimension via the suffix ##suf## which may expand to
.partsLo.partsLo (for Complex numbers) or .partsLo (for
Quaternions) or empty (for Octonions) as a technique to cast the result
to the correct dimension type.

Promote/Demote/Free Tables
One implementation technique I found to be invaluable was to put in
the non-trivial effort to construct large tables (in effect, 21 by 21) of
entries of functions and then to code each function. These tables are
indexed row and column by the 21 possible storage datatypes used to
promote as well as demote data from one type to another and are
used throughout the CHO code. This not only made it easier to code
functions sensitive to CHO numbers, but it simplified existing code
which had been more verbose than necessary when doing type
promotion, demotion, and free on non-CHO data.

Online Version
This paper is an ongoing effort and can be out-of-date the next day.
To find the most recent version, goto http://sudleyplace.com/APL / and

-8-

http://sudleyplace.com/APL

look for the title of this paper on that page.

Executable Version
The latest released version of the NARS2000 software may be found
in http://www.nars2000.org/download/ in either 32- or 64-bit versions.
This software runs natively under Microsoft Windows XP or later as
well as any Linux or Mac OS version which supports Wine (32-bit only)
which acts as a translation layer.

References

1. https://en.wikipedia.org/wiki/Quaternion
2. http://tamivox.org/redbear/qtrn_calc/index.html
3. https://en.wikipedia.org/wiki/Mathematical_Tables_Project
4. http://www.cs.bham.ac.uk/~aps/research/projects/as/resources/

AandS-letter-v1-2.pdf
5. https://archive.org/details/handbookofmathem1964abra
6. "Hypercomplex Notation in APL”

http://www.sudleyplace.com/APL/HyperComplex Notation in
APL.pdf

7. "Hypercomplex Numbers in APL”
http://www.sudleyplace.com/APL/HyperComplex Numbers in
APL.pdf

-9-

http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
https://archive.org/details/handbookofmathem1964abra
http://www.cs.bham.ac.uk/~aps/research/projects/as/resources/AandS-letter-v1-2.pdf
http://www.cs.bham.ac.uk/~aps/research/projects/as/resources/AandS-letter-v1-2.pdf
https://en.wikipedia.org/wiki/Mathematical_Tables_Project
http://tamivox.org/redbear/qtrn_calc/index.html
https://en.wikipedia.org/wiki/Quaternion
http://www.nars2000.org/download/

