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Introduction
In this paper I describe the nitty gritty details of implementing 
Hypercomplex numbers in APL, typically a topic of interest to 
developers only.

Prerequisite Reading
The paper “Hypercomplex Notation in APL”6 provides a summary of 
the notation used in this paper for Hypercomplex numbers, and the 
paper “Hypercomplex Numbers in APL”7 provides an overview of 
Hypercomplex numbers in general.

Nomenclature
CHO:  This acronym references the collection of Complex (ℂ), 
Quaternion (ℍ), and Octonion (�) numbers.  You might expect it to be 
abbreviated CQO, but by the time Quaternions came along (18431), Q 
was already used to refer to the Rational numbers.  You might think of 
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using R to refer to Rationals, but instead Q was chosen (for Quotients)
because R was already used to refer to Real numbers.  H was chosen 
to honor the discoverer of Quaternions, Sir William Rowan Hamilton.  
I'm glad we cleared that up.

Dimension vs. dimension:  The term dimension in APL refers to an 
array coordinate; first dimension, last dimension, etc.  That same term 
is also used by mathematicians concerning CHO numbers to indicate 
the number of coordinates of the number, Real numbers are 1-
dimensional, Complex numbers 2-dimensional, Quaternions 4-
dimensional, etc.

I use the same word in different contexts, and I expect that in nearly 
every case, the context in which the word is used will be obvious and 
will clarify which meaning is intended.

Bi-quadrants and bi-octants:  Complex numbers are 2-dimensional 
and are graphed in the plane with its two axes dividing the plane into 
four (=22) quadrants.  Quaternions are 4-dimensional and divide space
into 16 (=24) “corners” which I'm calling bi-quadrants as in 24.  
Similarly, I'm calling the 256 (=28) Octonion corners bi-octants.

Algorithms
Algorithms on Real and Complex numbers are plentiful, and when 
coupled with various open source libraries yields:

 Fixed precision Real and Complex floating point support from 
GSL

 Multiple precision Complex support from MPC
 Multiple precision integer/rational support from MPIR
 Multiple precision floating point support from MPFR
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Algorithms on Quaternions and Octonions are extremely rare.  Yet, to 
my great surprise, I found a cache of Quaternion algorithms in Dave 
Barber's excellent Quaternion Calculator2 written in Javascript.  Not 
only were these algorithms easily translated into C, but they were 
trivially easy to generalize to Octonions – so trivial that in every case, 
changing a 4 to an 8 was all that was necessary.  Moreover, if I 
needed a Complex number version of one of those algorithms, all I 
had to do was change a 4 to a 2.

For the irrational and transcendental functions we need fixed and 
multiple precision floating point algorithms which can then be 
parametrized with not only the CHO argument, but also the CHO 
dimension.  In other words, for the irrational non-Real cases, we need 
only two versions of these algorithms:  one using fixed precision 
floating point functions and one using multiple precision floating point 
functions.

These algorithms filled in all of the non-trivial circle functions along 
with exponentiation, power, square root, and log both natural and 
based for fixed precision floating point support for HO and multiple 
precision support for CHO.  In practice, once you have powers of e 
and natural logarithms, almost all of the trigonometric functions can be
defined in those terms, but having the algorithms already coded in 
Javascript makes the process much simpler.

Eventually, I found another excellent source, good old invaluable A&S 
(Abramowitz & Stegun4) sections 4.3.55-57, 4.4.37-39, 4.5.49-51 for 
the formulae “... in Terms of Real and Imaginary Parts” of the 
trigonometric functions.  Little known facts:  A&S was a consequence 
of the Mathematical Tables Project3 of the WPA of President Franklin 
Roosevelt.  A&S is considered by some to be the most cited book in 
the mathematical literature5 with an estimated 40,000 citations.
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Interestingly, algorithms on Complex numbers are not very general – 
those on Quaternions are best because the role of the imaginary 
coefficients is exposed much more so than it is in the corresponding 
Complex number algorithm.  Usually, an algorithm for Complex 
numbers has had all of the generality boiled and optimized out of it so 
that it is no longer obvious how to generalize it to a higher dimensional
number.

For example, here's an algorithm for natural log on Quaternions from 
Barber's Quaternion Calculator:

function logH (h, i, j, k)
{
    g = i*i + j*j + k*k;
    m = r_sqrt (h*h + g);
    g = r_sqrt (g);
    u = r_log (m);
    v = (g == 0) ? 0 : r_atan2 (g, h) / g;

    if ((h < 0) && (g == 0))
        r = Math.PI;
    else
        r = v*i;

    return (u, r, v*j, v*k);
}

As you can see, the log function takes in four numbers and returns 
four numbers.  Also, it's trivial to see how to extend this algorithm to 
Octonions as well as contract it for Complex numbers because the role
of the imaginary coefficients is made clear.  The corresponding 
Complex number-only algorithm would have been simplified to the 
point where you would have no idea of how to extend it.
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Here is an APL function based on the above algorithm to calculate 
natural logs on CHO numbers:

Z←log R;c g h m v
⍝ Log for Hypercomplex numbers
c←>R           ⍝ Expand into its coefficients
h←1↑c          ⍝ The real coefficient
m←√+/c*2       ⍝ Magnitude of R
g←√+/(1↓c)*2   ⍝ Magnitude of imaginary parts
Z←⍟m           ⍝ Real part is always ⍟m
:if g=0        ⍝ Imaginary parts = 0
  :if h<0      ⍝ Real part < 0
    Z←Z,1p1    ⍝ Angle is +180 degrees
  :end
:else          ⍝ Imaginary parts ≠ 0
  v←(12○h+g×0i1)÷g ⍝ 12○ = phase = atan2
  Z←Z,v×1↓c
:end
Z←<Z

The argument to log can be a scalar Real or CHO number with any of
the four possible types of coefficient.  Note that CHO numbers are 
handled as just a longer vector.  The imaginary parts have equal 
weight and are mixed together in an obvious way.  The :if … :else 
part of the control structure is there solely to handle principal values as
they are normally exceptional cases.

Euler's Identity
An interesting implementation challenge was confirming Euler's 
Identity:  *○1i ←→ ¯1.  As soon as I had exponentiation working, I 
tried that marvelous and elegant piece of code, as simple to state in 
APL as it is in mathematical notation.  I typed it and was greeted with 
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something like ¯1i¯2.612376911252165E¯19 – not the elegant 
answer I was expecting.

The reason why took a while to ferret out.  Eventually after checking 
my C code carefully, I went back to APL and typed the equivalent 
power series for exponentiation knowing that integer powers as a 
special case were already implemented:

      N←0..40
      R←(○1i)*N
      Q←R÷!N
      +/Q
¯1

This was even more puzzling – I was delighted to see that result, 
however, how could the APL code get the right answer, but the C code 
could only get close?  After scratching my head for a while, I 
remembered an unpleasant and counter-intuitive truth about numerical
analysis – on floating point numbers, addition is not associative.  
That is,

a+(b+c) ←/→ (a+b)+c. 

My C code calculated the above quotient the same way as the APL 
code, but the sum was calculated differently – in particular, in a 
different order.  My C code took the naïve approach and calculated 
each term from low-order exponents on up, accumulating it per 
iteration with no need for lengthy temporary storage.  In other words, 
the values in Q were added iteratively left to right as Q[1], 
Q[1]+Q[2], (Q[1]+Q[2])+Q[3], etc.  However, the APL sum was 
calculated from right to left starting with Q[39]+Q[40].  In effect, the 
APL reduction added the high-order small value terms first, eventually 
working its way down to the low-order (but larger magnitude) terms.  
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The C code did just the opposite.  The effect was that in the C code, 
the small value terms were ignored as they were overwhelmed by the 
large value terms by the time they were considered.  That is, the C 
code actually was calculating

      +/⌽R÷!N
¯1i¯2.612376911252165E¯19 

Once I changed the C code to store all of the intermediate results and 
then add them together from right to left, the expected answer from 
Euler's Identity finally displayed

      *○1i
¯1

Internal Functions
In order to simplify coding of the CHO algorithms, I defined numerous 
internal functions which could be used “inline” as it were – these 
proved to be a great time saver.  For example, the fixed precision 
floating point CHO number implementation for 0○R ←→ √1-R*2 looks 
like this (after a bit of editing for display purposes):

/* 1 - R * 2 */
Tmp = SubHC##N##F_RE (HC##N##Con1,

MulHC##N##F_RE (R.HC##N##F,
 R.HC##N##F));

/* sqrt (1 - R * 2) */
lpMemRes = SqrtHCxF_RE (Tmp, N)##suf##;

This code appears in a macro which implements this algorithm for all 
CHO dimensions.  As such, the ##N## represents the CHO dimension
which is inserted as text during pre-processing of the macro.  For 
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example, the name MulHC##N##F_RE expands to MulHC2F_RE for 
the Complex number version.  The call to

SqrtHCxF_RE (Tmp, N)##suf##

is an example of where the dimension is an argument to the function 
rather than there being separate 2-, 4-, and 8- dimensional versions as
is the case with MulHC##N##F_RE.  Because that function handles all 
dimensions, it can't return a result specific to the input dimension, so it 
returns a result cast to the highest dimension (but filling in only as 
many dimensions as needed) and the caller then pares it down to the 
expected dimension via the suffix ##suf##  which may expand to
.partsLo.partsLo  (for Complex numbers) or .partsLo (for 
Quaternions) or empty (for Octonions) as a technique to cast the result
to the correct dimension type.

Promote/Demote/Free Tables
One implementation technique I found to be invaluable was to put in 
the non-trivial effort to construct large tables (in effect, 21 by 21) of 
entries of functions and then to code each function.  These tables are 
indexed row and column by the 21 possible storage datatypes used to 
promote as well as demote data from one type to another and are 
used throughout the CHO code.  This not only made it easier to code 
functions sensitive to CHO numbers, but it simplified existing code 
which had been more verbose than necessary when doing type 
promotion, demotion, and free on non-CHO data.

Online Version
This paper is an ongoing effort and can be out-of-date the next day.  
To find the most recent version, goto http://sudleyplace.com/APL  /   and 
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look for the title of this paper on that page.

Executable Version
The latest released version of the NARS2000 software may be found 
in http://www.nars2000.org/download/ in either 32- or 64-bit versions.  
This software runs natively under Microsoft Windows XP or later as 
well as any Linux or Mac OS version which supports Wine (32-bit only)
which acts as a translation layer.
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