
Hypercomplex GCD
in APL
Bob Smith

Sudley Place Software
Originally Written

15 Apr 2016
Updated

11 Apr 2018

Introduction
Euclidean Division1 (Greatest Common Divisor or GCD) is a simple
algorithm in the normal domain of Real numbers, but when we venture
into Hypercomplex numbers the picture is different.

In this paper, I examine two ways to define the APL primitive functions
Floor, Residue, and GCD on Hypercomplex numbers along with their
consequences. I consider two definitions of the Floor function, one by
E. E. McDonnell3 (1973) and one by A. Hurwitz5 (1888). The Floor
function is used in the definition of the Residue function and, in turn,
that function is used in the definition of the GCD function.

We also discuss the Principal Values for GCD and provide a definition.

Prerequisite Reading
The paper “Hypercomplex Notation in APL”9 provides a summary of
the notation used in this paper for Hypercomplex numbers, and the
paper “Hypercomplex Numbers in APL”10 provides an overview of
Hypercomplex numbers in general.

GCD
The standard GCD function is defined as follows as an operator so as

-1-

to pass the appropriate Residue function as the left operand:

Z←L (LO GCD) R;T ⎕CT
⍝ L∨R for Hypercomplex numbers
⍝ using LO as the Residue function
⍝ Scalar L and R
⎕CT←1E¯10 ⍝ Needed for FP numbers only
:repeat ⍝ Euclidean Algorithm
 T←L
 L←L LO R
 :Assert (|L)<|T
 R←T
:until (|L)≤SCT ⍝ FP numbers only

Note the :Assert statement in the midst of the loop. It is present to
catch invalid Residue function results which leads this iterative
function not to terminate because the magnitude of L must decrease
at every iteration. The global value SCT holds the value of System
Comparison Tolerance (e.g., 4E¯15).

Residue
Next in line is the standard (recursive) residue function as used by the
GCD function above, implemented as an operator so as to pass the
appropriate Floor function as the left operand:

Z←L (LO Residue) R
⍝ L|R for Hypercomplex numbers
⍝ using LO as the Floor function
⍝ Scalar L and R
⍝ Sensitive to ⎕CT
→(L(=⍠0) 0 1)/L0 L1 ⍝ a.k.a. L=0 1 with ⎕CT←0
Z←1 ∇ R÷L ⋄ :Assert 1>|Z
Z←Z×L ⋄ :Assert Z=LO Z ⋄ →0
L0:Z←R ⋄ →0
L1:Z←R-LO R

-2-

The notation =⍠0 uses the Variant operator to execute the Equal
function with ⎕CT set to zero. The ∇ symbol invokes the derived
function (LO Residue) recursively. Note the first :Assert
statement – it ensures that the magnitude of the Residue function's
results are always less than the magnitude of the modulus (left
argument) so that the GCD function above terminates.

Floor
While the Floor of a Real number is easy to define uniquely, there are
several different ways to extend it to Hypercomplex numbers. One
definition is by E. E. McDonnell in his paper “Complex Floor”3, and
another is by A. Hurwitz as described by D. Forkes in his paper
“Complex Floor Revisited”4.

Geometrically, on Complex numbers, these definitions appear as
follows:

Figure 1: McDonnell's Floor Figure 2: Hurwitz's Floor

These figures illustrate the set of points whose Complex Floor is zero
(a.k.a. 0i0) for both McDonnell's (center slanted rectangle) and

-3-

Hurwitz's (center outlined square) Floor functions. Both have unit
area. The APL functions that implement these definitions are as
follows:

McDonnell's Floor

Z←SF R;Cof Flr Frc
⍝ ⌊R for Hypercomplex numbers
⍝ using McDonnell's Floor as extended by Smith
⍝ Scalar R
⍝ Sensitive to ⎕CT
Cof←>R ⍝ Coefficients
Flr←⌊Cof ⍝ Lower left corner
Frc←1|Cof ⍝ Fractional parts
:if 1 (≤⍠0) +/Frc ⍝ a.k.a. 1≤+/Frc with ⎕CT←0
 Flr[Frc⍳⌈/Frc]+←1
:end
Z←<Flr

Hurwitz's Floor

Z←HF R
⍝ ⌊R for Hypercomplex numbers
⍝ using Hurwitz's Floor
⍝ Scalar R
⍝ Sensitive to ⎕CT
Z←>R ⋄ Z←<⌊Z+(1+⊤Z)÷2

Note the odd construction Z+(1+⊤Z)÷2 the purpose of which is to
add 1÷2 to Z while retaining Z's datatype, especially important if Z is a
multi-precision Rational/Integer.

Put it All Together
GCD is defined in terms of the Residue primitive function which in turn
is defined in terms of the Floor function. The Floor function by E. E.
McDonnell is the APL industry standard in that it has been adopted by

-4-

at least three APL vendors who have implemented Complex numbers.
These two implementations of McDonnell's Floor function are very
similar, but not identical. The Floor function by A. Hurwitz was brought
to our attention by D. Forkes4. We need to examine these two
definitions on Complex numbers to see how suitable they are to
extend to Quaternions and Octonions. To do this, we need one more
concept.

Fractionality
This property of a Floor function means that the “magnitude of the
difference between a number and its floor shall be less than one”3,
which McDonnell calls “the fundamental property of the floor function”.
In particular, with this property, the iterative GCD algorithm is assured
to terminate and converge to the answer; without it, the algorithm
need not.

Actually, Fractionality is a property of a Floor function as applied to a
particular type of number. For example, all of the Floor functions
under consideration have Fractionality on both Real and Complex
numbers. However, neither Floor function has Fractionality on
Quaternions or Octonions.

Why No Fractionality?
The short reason why is that as the dimension increases (in this case
from 1 to 2 to 4 to 8) the diagonals (which are the longest distances
from the origin to any corner in Figures 1 and 2 when extended to
Quaternions) get longer and longer – when they meet or exceed one,
we lose Fractionality. Concerning higher dimensions, “As J. H.
Conway once explained to Martin Gardner, There is a lot of room up
there.”6.

Focusing on just the interior of the two unit areas in Figures 1 and 2 (a
slanted rectangle for McDonnell's Floor and a square for Hurwitz's
Floor), the Complex Floor of all of the interior points is zero (a.k.a.

-5-

0i0). As Fractionality requires that the magnitude of the difference
between a point and its Floor be less than one, this translates to the
magnitude of the point is less than one (because the Floor is zero).

For McDonnell's Floor on Complex numbers, the longest diagonal
distance to a corner (either 1i0 or 0i1) of the unit area is of length
just under one, but not equal to one because the points at 1i0 or 0i1
are not included in the boundary of the rectangle around 0i0 (they
are included in the boundary of adjacent rectangles).

For Hurwitz's Floor on Complex numbers, the longest diagonal
distance to a corner (such as 0.5i0.5) is of length (√2)÷2,
(=0.7071…). For this reason, Hurwitz's Floor tends to converge more
quickly than does McDonnell's when used in GCD.

For McDonnell's Floor on Quaternions, the four-dimensional unit
space of all such points whose Floor is zero (a.k.a. 0i0j0k0) has two
corners (at 1i0j1k1 and 0i1j1k1) whose diagonal distance from
the origin is √3. As this value is greater than one, McDonnell's Floor
on Quaternions does not have Fractionality and as such is not a
suitable definition of Floor on Quaternions.

For Hurwitz's Floor on Quaternions, all (sixteen) corners of its unit 4-
cube are equally farthest from the origin. Because this unit 4-cube
tessellates the entire 4-space, half of the corners (and edges) are in
the unit 4-cube and half are in one of the adjacent unit 4-cubes. Using
one of the corners in this unit 4-cube, its diagonal distance from the
origin is exactly one. As this value is not less than one, Hurwitz's
Floor on Quaternions does not have Fractionality and as such is not a
suitable definition of Floor on Quaternions.

Hurwitz Quaternions
As the literature suggests2, if we extend Quaternion integers to
include Quaternions whose individual components are all half integers

-6-

(that is, half of an odd integer), then Euclidean Division is possible –
these values are called Hurwitz Quaternions8.

For example, 1i2j3k4, 1.5i2.5j3.5k4.5 are both Hurwitz
Quaternions, but 1.5i2j3k4 is not because all or none of the
coefficients must be half integers – no mixing.

As explained by Conway & Smith13 and referring to Figure 2, the
sixteen corners of the unit 4-cube centered on the origin are exactly
the points where the distance from the origin is exactly 1; all other
points in or on the 4-cube are at distance less than 1 from the origin.
Now, because those sixteen points are all Hurwitz Integers, we define
their Floor to be themselves, and so for those sixteen points, the
magnitude of the difference between the number and its Floor is zero.

This change requires a re-definition of Hurwitz's Floor function as
follows:

Z←UF R;F T f
⍝ ⌊R for Hypercomplex numbers
⍝ using Hurwitz's Floor function
⍝ returning the nearest Hurwitz Quaternion
⍝ Scalar R
⍝ Sensitive to ⎕CT
F←>R ⋄ f←{⍵-(×⍵)×0=2|⍵}
Z←< ⌊ F+(1+⊤F)÷2
T←<(f⌊2×F+(1+⊤F)÷4)÷2
:if (|R-Z)≥|R-T ⋄ Z←T ⋄ :end

where Z calculates the nearest point with all integer coordinates and T
calculates the nearest Hurwitz Integer (point with all half integer
coordinates). Whichever point is closer to the incoming value, we
choose it. With this change, GCD using Hurwitz's Residue and Floor
has Fractionality and is defined on Quaternions.

-7-

An APL implementation of this form of the Residue function for
Quaternions using Hurwitz's Floor is as follows:

Z←L UR R
⍝ L|R for Hypercomplex numbers
⍝ using Hurwitz's Floor function
⍝ Scalar L and R
⍝ Sensitive to ⎕CT
→(L(=⍠0) 0 1)/L0 L1 ⍝ a.k.a. L=0 1 with ⎕CT←0
Z←L×1∇R÷L ⋄ →0
L0:Z←R ⋄ →0
L1:Z←R-UF R

Octonions
For Octonions, neither definition of Floor has Fractionality as the
maximum diagonal distances in both cases are greater than one, and
as such there is no suitable definition of Floor on Octonions.

GCD Principal Values
The principal value of the GCD function introduces additional
complications. The GCD of (say) 117i44 and ¯63i¯16 may be any
of 3i¯4 4i3 ¯3i4 ¯4i¯3 as they all divide both arguments.
McDonnell7 made a good suggestion that for Complex numbers, the
principal value be in the first quadrant (1i1) or on the positive real
axis (1i0) which means that 117i44∨¯63i¯16 ←→ 4i3.

For Complex numbers, because there are only four quadrants, it's
always possible to rotate a GCD result from any quadrant into the first
quadrant by multiplying it by one of the four Complex integer units,
i.e., ±1 and ±1i.

However, for Quaternions, there are sixteen (=24) bi-quadrants and
only eight Quaternion integer units, i.e., ±1, ±1i, ±1j, and ±1k.
Because Quaternions are non-commutative, we can reach additional

-8-

bi-quadrants by multiplying the GCD result on both sides by an
integer unit, but still the values in half of the bi-quadrants (e.g.,
¯1i1j1k1) cannot be rotated into the first bi-quadrant (1i1j1k1).

The solution I propose is to widen the definition of a principal value of
GCD for Quaternions to include one nearby bi-quadrant ¯1i1j1k1, in
which case left and right multiplication by integer units can now rotate
every GCD result into one of those two corners. The choice of the
additional corner for Quaternions is arbitrary as it could be any corner
with either one positive coefficient and the rest negative, or one
negative coefficient and the rest positive.

Although it is trivial to extend this method to Octonions, there is no
need as GCD is not defined on those numbers due to the lack of
Fractionality.

This rotation is implemented by computing various static tables which
are used by the following algorithm:

Z←rotateGCD R;⎕IO T
⍝ Rotate R into the first (all non-negative
⍝ coefficients) corner or second (real coord
⍝ negative, all others non-negative) corner
⍝ Scalar R
⎕IO←0
T←3⊥1+×⌽>R
:switch =R ⍝ Split cases on the dimension of R
 :case 1 ⋄ Z←R
 :case 2 ⋄ Z← R×u2[T ⊃s2]
 :case 4 ⋄ Z←u4[T 0⊃s4]×R×u4[T 1⊃s4]
:end

where u2←uf 2 and u4←uf 4 are the 2- and 4-dimensional units
computed from uf←{<(⊢⍪-)∘.=⍨⍳⍵}, and s2 and s4 are computed
by a separate APL function that calculates the indices of the

-9-

appropriate units to use when multiplying on the right for s2 or left and
right for s4 to rotate the number into the first (Complex) or first or
second (Quaternion) corner.

The former (s2) is a 9-element vector of indices

1 2 2 1 0 0 3 3 0

and the latter (s4) is an 81-element vector of pairs of indices, one to
multiply by the appropriate unit on the left and one for the right, the
first few values of which are

(0 1) (2 6) (0 1) (0 1) (0 4)…

Combining this with the previous UG1 function yields

Z←L UG R;T ⎕CT
⍝ L∨R for Hypercomplex numbers
⍝ using the Hurwitz Residue function
⍝ Scalar L and R
⎕CT←1E¯10 ⍝ Needed for FP numbers only
:repeat ⍝ Euclidean Algorithm
 T←L
 L←L UR R
 :Assert (|L)<|T
 R←T
:until (|L)≤SCT ⍝ FP numbers only
⍝ Rotate R into the first quadrant
⍝ or first two bi-quadrants
Z←rotateGCD R

Conclusions
Starting with two possible definitions of the Floor primitive function,
we've shown that only the one by Hurwitz has a valid definition on
Quaternions (due to Fractionality) and then only if we extend GCD to

-10-

Hurwitz Quaternions so as to enable Euclidean Division on
Quaternions.

Thus, the proper definition of Greatest Common Divisor in APL on
Quaternions is the derived function that passes UR as the Residue
function to the GCD operator: (UR GCD), a.k.a. UG above.

Moreover, the principal value for GCD is defined for Quaternions to
include rotation of the value into one of two adjacent bi-quadrants.

Neither definition of the Floor function allows Euclidean Division on
Octonions, and it is unlikely any definition can.

Online Version
This paper is an ongoing effort and can be out-of-date the next day.
To find the most recent version, goto http://sudleyplace.com/APL / and
look for the title of this paper on that page. Related papers such as
“Hypercomplex Quotients in APL”11, “Hypercomplex Numbers in
APL”10 , “Hypercomplex Notation in APL”9, as well as “Rational &
Variable-precision Floating Point Numbers”12 may be found in the
same place.

Executable Version
All of the above APL functions may be executed in NARS2000, an
experimental APL interpreter available for free as Open Source
software.

The latest released version of the NARS2000 software may be found
in http://www.nars2000.org/download/ in either 32- or 64-bit versions.
This software runs natively under Microsoft Windows XP or later as
well as any Linux or Mac OS version which supports Wine (32-bit
only) which acts as a translation layer.

The choice of which Floor function to invoke on Hypercomplex

-11-

http://sudleyplace.com/APL
http://www.nars2000.org/download/

numbers is under user-control. This choice applies not only to the
Floor primitive, but also all other primitive functions directly or
indirectly sensitive to Floor. NARS2000 uses McDonnell's Floor
function when ⎕FEATURE[3]←0 and Hurwitz's Floor function when
⎕FEATURE[3]←1.

When using McDonnell's Floor function, all primitives that depend on
Floor on Quaternions signal a DOMAIN ERROR. Only when using
Hurwitz's Floor function does the system produce a result.

References
1. Wikipedia, "Euclidean Division ",

https://en.wikipedia.org/wiki/Euclidean_division

2. Wikipedia, "Hurwitz Quaternion " ,
https://en.wikipedia.org/wiki/Hurwitz_quaternion

3. McDonnell, E. E., "Complex Floor", APL73
http://www.jsoftware.com/papers/eem/complexfloor1.htm

4. Forkes, D., "Complex Floor Revisited",
http://dl.acm.org/citation.cfm?id=805343

5. Hurwitz, A., Über die Entwicklung Komplexer Größen in
Kettenbrüche, Acta Mathematica, 11, 1888
http://www.ulb.tu-darmstadt.de/tocs/94627940.pdf

6. Siobhan Roberts, " Genius At Play: The Curious Mind of John
Horton Conway " , Bloomsbury, 2015, p. xvi.

7. McDonnell, E. E. "Complex Numbers", SATN40,

8. Hurwitz, A. (1919), “Vorlesungen über die Zahlentheorie der
Quaternionen”, Berlin: J. Springer, JFM 47.0106.01

9. "Hypercomplex Notation in APL”

-12-

https://zbmath.org/?format=complete&q=an:47.0106.01
https://en.wikipedia.org/wiki/Jahrbuch_%C3%BCber_die_Fortschritte_der_Mathematik
http://www.jsoftware.com/papers/satn40.htm
https://books.google.com/books?id=LC52BwAAQBAJ&printsec=frontcover&dq=%22genius+at+play%22
https://books.google.com/books?id=LC52BwAAQBAJ&printsec=frontcover&dq=%22genius+at+play%22
https://books.google.com/books?id=LC52BwAAQBAJ&printsec=frontcover&dq=%22genius+at+play%22
https://books.google.com/books?id=LC52BwAAQBAJ&printsec=frontcover&dq=%22genius+at+play%22
http://www.ulb.tu-darmstadt.de/tocs/94627940.pdf
http://www.ulb.tu-darmstadt.de/tocs/94627940.pdf
http://www.ulb.tu-darmstadt.de/tocs/94627940.pdf
http://dl.acm.org/citation.cfm?id=805343
http://www.jsoftware.com/papers/eem/complexfloor1.htm
https://en.wikipedia.org/wiki/Hurwitz_quaternion
https://en.wikipedia.org/wiki/Euclidean_division

http://www.sudleyplace.com/APL/HyperComplex Notation in
APL.pdf

10. "Hypercomplex Numbers in APL”
http://www.sudleyplace.com/APL/HyperComplex Numbers in
APL.pdf

11. "Hypercomplex Quotients in APL”
http://www.sudleyplace.com/APL/HyperComplex Quotient s in
APL.pdf

12. “Rational & Variable-precision Floating Point Numbers”,
http://www.sudleyplace.com/APL/Rational & Variable-Precision
FP.pdf

13. John Horton Conway, Derek Alan Smith (2003), On Quaternions
and Octonions: Their Geometry, Arithmetic, and Symmetry, A K
Peters Ltd., page 56, ISBN 978-1-56881-134-5

-13-

https://en.wikipedia.org/wiki/Special:BookSources/9781568811345
http://www.sudleyplace.com/APL/Rational%20&%20Variable-Precision%20FP.pdf
http://www.sudleyplace.com/APL/Rational%20&%20Variable-Precision%20FP.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Quotients%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Quotients%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Quotients%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Quotients%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Quotients%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf
http://www.sudleyplace.com/APL/HyperComplex%20Notation%20in%20APL.pdf

