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Introduction
Of the several definitions of Complex Floor, there is one from Gene McDonnell for which there
are two different implementations in APL.  This is of interest primarily because the two 
algorithms produce different results in certain edge conditions.

In order to compare the two versions of McDonnell's complex floor algorithm, one each from 
McDonnell1 and Forkes2 this paper provides the gory details of both an interval and precision 
analysis of the two in order to determine why they produce different results.

The prototypical element in the domain for
McDonnell's definition of values whose Complex
Floor is 0J0 is a rectangle between the points 
0J1, 1J0, 0.5J¯0.5, and ¯0.5J0.5.  This
yields a shape of sides √2 by √÷2 at an angle of
45° with the two short lines at the upper left and
lower right and the two long lines at the upper
right and lower left where the middle point of the
lower left long line is at the origin 0J0.  This
rectangle then tessellates the entire complex
plane in the manner shown in the adjacent
diagram.

McDonnell's definition is such that the Complex
Floor of all of the interior points is 0J0.  The 
boundary points are divided up such that the
values on the upper short line [¯0.5J0.5, 0J1)
and the lower long line [¯0.5J0.5, 0.5J¯0.5)
(shown in bold) all have a Complex Floor of 
0J0.  The Complex Floor of all of the other boundary points is other than 0J0.  Thus, of the 
four corners, only ¯0.5J0.5 has a Complex Floor of 0J0.

As McDonnell's definition satisfies the property of “Integer Translation”, we need choose only 
one rectangle to analyze:  the one whose floor is 0J0.  Because the floor of all of the interior 

-1-



values is 0J0, what remains to analyze is the boundary of the rectangle.

In the following interval analysis, the four boundary lines are parameterized by the variable t 
ranging from 0 to 1.  These limiting values represent the starting and ending points of the line,
respectively.  Depending upon which of the four lines is being analyzed, the interval for t may
include one or both of the endpoints.  Regardless of this choice, all of the boundary points are
included and analyzed.

McDonnell's Floor as per Forkes
    ∇ Z←MF R;A;B;A1;B1;T
[1]   ⍝ McDonnell's Complex Floor by Doug Forkes
[2]   A←9○R   ⍝ Real part
[3]   B←11○R  ⍝ Imaginary part
[4]   T←⌊A+B
[5]   B1←⌈0.5×T-1+A-B
[6]   A1←T-B1
[7]   Z←A1+0J1×B1
    ∇

Upper Short Line t∊[0,1) Lower Short Line t∊[0,1)

Parametrized Line [¯0.5,0.5] + t × [0.5,0.5] [0.5,¯0.5] + t × [0.5,0.5]

A ¯0.5 + t × 0.5  0.5 + t × 0.5

B  0.5 + t × 0.5 ¯0.5 + t × 0.5

A+B t t

T←⌊A+B 0 0

A-B ¯1 1

1+A-B 0 2

T-1+A-B 0 ¯2

0.5×T-1+A-B 0 ¯1

Im←⌈0.5×T-1+A-B 0 ¯1

Re←T-Im 0 1

Re+0J1×Im 0J0 1J¯1

Upper Long Line t∊[0,1] Lower Long Line t∊[0,1)

Parametrized Line [0,1] + t × [1,¯1] [¯0.5,0.5] + t × [1,¯1]

A t ¯0.5 + t

B 1 - t  0.5 - t
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A+B 1 0

T←⌊A+B 1 0

A-B ¯1 + 2 × t ¯1 + 2 × t

1+A-B      2 × t      2 × t

T-1+A-B  1 – 2 × t     ¯2 × t

0.5×T-1+A-B 0.5 – t -t

Im←⌈0.5×T-1+A-B 1 if t∊[0,0.5)
0 if t∊[0.5,1]

0

Re←T-Im 0 if t∊[0,0.5)
1 if t∊[0.5,1]

0

Re+0J1×Im 0J1 if t∊[0,0.5)
1J0 if t∊[0.5,1]

0J0

McDonnell's Floor as per McDonnell
    ∇ Z←mf R;r;i;b;x;y
[1]   ⍝ McDonnell's Complex Floor by EEM
[2]   r←9○R   ⍝ Real part
[3]   i←11○R  ⍝ Imaginary part
[4]   b←(⌊r)+0J1×⌊i
[5]   x←1|r
[6]   y←1|i
[7]   :if 1>x+y
[8]     Z←b
[9]   :else
[10]    :if x≥y
[11]      Z←b+1
[12]    :else
[13]      Z←b+0J1
[14]    :end
[15]  :end
    ∇

The following APL code summarizes the logic at the end of McDonnell's version of his 
algorithm so as to be easier to read the following two tables.

1>x+y
FALSE
FALSE
TRUE
TRUE

 x≥y
FALSE
TRUE
FALSE
TRUE

Result
b+0J1
b+1
b
b

Upper Short Line t∊[0,1) Lower Short Line t∊[0,1)

Parametrized Line [¯0.5,0.5] + t × [0.5,0.5] [0.5,¯0.5] + t × [0.5,0.5]
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r ¯0.5 + t × 0.5  0.5 + t × 0.5

⌊r ¯1  0

i  0.5 + t × 0.5 ¯0.5 + t × 0.5

⌊i 0 ¯1

0J1×⌊i 0J0 0J¯1

b←(⌊r)+0J1×⌊i ¯1J0 0J¯1

x←1|r [0.5,1) [0.5,1)

y←1|i [0.5,1) [0.5,1)

x+y [1,2) [1,2)

1>x+y FALSE FALSE

x≥y TRUE TRUE

(FALSE, TRUE ) b+1   ←→  0J0 b+1 ←→ 1J¯1

Upper Long Line t∊[0,1] Lower Long Line t∊[0,1)

Parametrized Line [0,1] + t × [1,¯1] [¯0.5,0.5] + t × [1,¯1]

r t ¯0.5 + t

⌊r 0 if t=0
0 if t∊(0,1)
1 if t=1

¯1 if t∊[0,0.5)
 0 if t=0.5
 0 if t∊(0.5,1)

i 1 - t  0.5 - t

⌊i 1 if t=0
0 if t∊(0,1)
0 if t=1

 0 if t∊[0,0.5)
 0 if t=0.5
¯1 if t∊(0.5,1)

0J1×⌊i 0J1 if t=0
0J0 if t∊(0,1)
0J0 if t=1

0J0  if t∊[0,0.5)
0J0  if t=0.5
0J¯1 if t∊(0.5,1)

b←(⌊r)+0J1×⌊i 0J1 if t=0
0J0 if t∊(0,1)
1J0 if t=1

¯1J0  if t∊[0,0.5)
 0J0  if t=0.5
 0J¯1 if t∊(0.5,1)

x←1|r 0 if t=0
t if t∊(0,1)
0 if t=1

[0.5,1) if t∊[0,0.5)
0       if t=0.5
(0,0.5) if t∊(0.5,1)

y←1|i 0   if t=0
1-t if t∊(0,1)
0   if t=1

[0.5,0) if t∊[0,0.5)
0       if t=0.5
(1,0.5) if t∊(0.5,1)

x+y 0 if t=0
1 if t∊(0,1)

1 if t∊[0,0.5)
0 if t=0.5
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0 if t=1 1 if t∊(0.5,1)

1>x+y TRUE  if t=0
FALSE if t∊(0,1)
TRUE  if t=1

FALSE if t∊[0,0.5)
TRUE  if t=0.5
FALSE if t∊(0.5,1)

x≥y TRUE  if t=0
FALSE if t∊(0,0.5)
TRUE  if t∊[0.5,1)
TRUE  if t=1

TRUE  if t∊[0,0.5)
TRUE  if t=0.5
FALSE if t∊(0.5,1)

(TRUE , TRUE )
(FALSE, FALSE)
(FALSE, TRUE )
(TRUE , TRUE )
(TRUE , FALSE)

b     ←→ 0J1 if t=0
b+0J1 ←→ 0J1 if t∊(0,0.5)
b+1   ←→ 1J0 if t∊[0.5,1)
b     ←→ 1J0 if t=1

b     ←→ 0J0 if t=0.5

b+1   ←→ 0J0 if t∊[0,0.5)

b+0J1 ←→ 0J0 if t∊(0.5,1)

Conclusion in Theory
Based upon the above interval analysis, in theory, both algorithms should produce identical 
results.

Theory vs. Practice
Perhaps surprisingly, in practice, there are many points where the two algorithms differ.  To 
find such points, define a grid of points in the 2 by 2 square centered at the origin.  For 
example the following function takes a step value, produces a 2 by 2 square grid of that 
granularity, compares the result of the two algorithms, and returns the points where they 
disagree:

    ∇ EX←test4 step;⎕IO ⎕CT XX ZZ a
[1]   ⎕IO←⎕CT←0
[2]   
[3]   XX←¯1+step×⍳⌊1+2÷step
[4]   ZZ←⍉XX∘.+⌽0J1×XX
[5]   
[6]   a←,(mf¨ZZ)≠MF ZZ
[7]   EX←ZZ[⊂[0] (⍴ZZ)⊤a/⍳×/⍴ZZ]
    ∇
      ⍴EX2←test4 0.1
2
      mf¨EX2
¯1J1 ¯1J1 
      MF EX2
0J0 0J0 

Note that we need the each operator to apply mf to multiple values as it is not written as a 
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purely scalar function, whereas MF is.

Reducing the step value to 0.05, 0.01, or lower produces many more points of 
disagreement.

For a step value of 0.1, the points where the two algorithms differ are

¯0.09999999999999998J0.9000000000000001
¯0.29999999999999993J0.7000000000000002

As per the algorithm in Wikipedia3 for computing the distance from a line to a point (a version 
of which is listed in the Appendix), both of the above points are just above the upper short line
(and thus outside the bounding rectangle) and so the Complex Floor of neither point should 
be 0J0, but that's what MF says it is.

This discrepancy can be illuminated on the NARS20004 system by converting the input to 
multiple-precision floating point (as provided by the MPFR library already built into 
NARS2000) and then varying the precision of the calculations.  In particular, adding 0v to a 
number converts it to MPFR format and the value of the system variable ⎕FPC controls the 
precision.

      ⎕FPC←53
      mf¨EX2+0v
¯1J1 ¯1J1
      MF EX2+0v
0J0 0J0

Adding 0v to the input doesn't change its precision (still 53 bits), but it does change the 
precision of the calculations on these numbers to that of ⎕FPC.  When we increase the value
of ⎕FPC by just one bit, that provides enough additional precision needed by the calculations 
to obtain the correct answer.

      ⎕FPC←54
      mf¨EX2+0v
 ¯1J1 ¯1J1
      MF EX2+0v
¯1J1 ¯1J1

More careful analysis shows that the problem in MF is in the calculation of A-B on line 5.  
Stopping execution there shows as follows:

      5 ⎕STOP 'MF'
      MF EX2[0]
MF[5] *
      A
¯0.09999999999999998
      B
0.9000000000000001
      A-B
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¯1
      →⎕LC
0J0
      ⍬ ⎕STOP 'MF'

Clearly, there is not enough precision in the calculation of A-B to get an accurate result.  
There is a way out which is to scale the input so that the scaled value is in a constant range 
but this trick must be applied very carefully.  Here's the above A-B scaled by 10:

      ((10×A)-10×B)÷10
¯1.0000000000000002

The trick is knowing when and how to use it, a skill I have not mastered.

Note that the lack of precision in the calculation of A-B is true regardless of how precise the 
input is.  Here's the same example at 512 bits of precision:

      ⎕FPC←512
      ⎕PP←200
      ⍴EX3←test4 0.1v
3 
      mf¨EX3
¯1J1 ¯1J1 0J0 
      MF EX3
0J0 0J0 1J¯1 
      5 ⎕STOP 'MF'
      MF EX3[0]
MF[5] *
      A
¯0.199999999999999999999999999999999999999999999999999999999999999
      999999999999999999999999999999999999999999999999999999999999
      999999999999999999999999999999985 
      B
0.8000000000000000000000000000000000000000000000000000000000000000
      000000000000000000000000000000000000000000000000000000000000
      0000000000000000000000000000009 
      A-B
¯1
      ((10×A)-10×B)÷10
¯1.000000000000000000000000000000000000000000000000000000000000000
      000000000000000000000000000000000000000000000000000000000000
      00000000000000000000000000000015 
      →⎕LC
0J0

Again, just one more bit in the calculations makes all the difference:

      ⎕FPC←513
      MF EX3[0]
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MF[5] *
      A
¯0.199999999999999999999999999999999999999999999999999999999999999
      999999999999999999999999999999999999999999999999999999999999
      999999999999999999999999999999985 
      B
0.8000000000000000000000000000000000000000000000000000000000000000
      000000000000000000000000000000000000000000000000000000000000
      0000000000000000000000000000009 
      A-B
¯1.000000000000000000000000000000000000000000000000000000000000000
      000000000000000000000000000000000000000000000000000000000000
      00000000000000000000000000000007
      →⎕LC
¯1J1
      ⍬ ⎕STOP 'MF' 

Moreover, watch what happens if we change MF and mf to allow all calculations as well as the
result to be done in the same datatype and precision as the argument, be it fixed precision 
floating point (IEEE-754), multiple precision floating point (MPFR), or multiple precision 
rational (MPIR).  This involves calculating the real and imaginary parts more carefully so as to
retain the datatype of the coefficients and avoiding floating point constants.

In particular, change MF lines 2 and 3 from

MF[2]   A←9○R   ⍝ Real part
MF[3]   B←11○R  ⍝ Imaginary part

to

MF[2]  (A B)←⊂[⍳⍴⍴R] ⎕DC R  ⍝ Real and imaginary parts
MF[3]

In this instance, the system function ⎕DC (Data Conversion) splits out the real and imaginary 
coefficients of the two-dimensional (Complex) number R to a one-dimensional array by 
appending a length 2 dimension on the right of the shape vector of R while retaining the 
datatype of the coefficients.  The enclose converts the result of ⎕DC to a two-element vector 
suitable for strand assignment into A and B.

We also need to eliminate the floating point constant in line 5 by changing it from

MF[5]  B1←⌈0.5×T-1+A-B

to

MF[5]  B1←⌈(T-1+A-B)÷2

Similarly, mf needs the same treatment of how it calculates its real and imaginary coefficients 
by changing lines 2 and 3 from
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mf[2]  r←9○R   ⍝ Real part
mf[3]  i←11○R  ⍝ Imaginary part

to

mf[2]  (r i)←⊂[⍳⍴⍴R] ⎕DC R  ⍝ Real and imaginary parts
mf[3]

None of these changes has any effect on the theoretical accuracy of the calculations.  
However, now we can call the test4 function with step as a Rational number, and all 
calculations in test4 as well as in mf and MF are done in infinite precision Rationals at which
point the two algorithms produce identical results:

      ⍴test4 1r10
0

Conclusion in Practice
While MF has several desirable properties (shorter, more readable, and a scalar algorithm) vs.
mf, unfortunately it is sensitive to the precision of its calculations.  In particular its 
calculations need at least one more bit of precision (a guard bit, as it were) than in its input to 
produce correct results in certain edge conditions.

Theoretically these two algorithms produce identical results, and also do so in practice if the 
calculations are done in infinite precision.  It is only in the finite precision case regardless of 
the precision that the Achilles' heel of floating point arithmetic appears.

We all know that floating point arithmetic is tricky, but we rarely know when we're being 
tricked.  Here's a concrete example of such trickery that should cause us all to re-examine our
floating point code.

Legend
In the notation below, a may be larger than, the same as, or smaller than b.

(a,b) is the open interval between a and b excluding both endpoints
(a,b] includes the righthand endpoint only
[a,b) includes the lefthand endpoint only
[a,b] includes both endpoints

All calculations done with ⎕CT←0.

Online Version
This paper is an ongoing effort and can be out-of-date the next day.  To find the most recent 
version, goto http://sudleyplace.com/APL  / and look for the title of this paper on that page. You 
may also want to read up on “HyperComplex Numbers in APL” as well as “Rational & 
Variable-precision Floating Point Numbers” by going to the above link and looking for those 
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titles.

Alpha Version
The latest (unreleased) Alpha version of the NARS2000 software may be found in 
http://www.nars2000.org/download/binaries/alpha/ in either the w32/ or w64/ directory 
depending upon your OS.
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Appendix
The following function was coded from the Wikipedia article on calculating the distance from a
line to a point.  This shortened version returns the signum (1, 0, ¯1) of the distance.

    ∇ Z←P0 DirectionLnPt (P1 P2)
[1]   ⍝ Direction (1, 0, ¯1) from a line defined
[2]   ⍝   by its endpoints P1 P2 to a point P0.
[3]   ⍝ Looking from P1 to P2, the direction is
[4]   ⍝    1 if P0 is on the right,
[5]   ⍝    0 ...             line,
[6]   ⍝   ¯1 ...             left.
[7]   ⍝ https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
[8]   
[9]   ⍝ Convert Complex numbers to their coefficients
[10]  :if 2==P0 ⋄ P0←⎕DC P0 ⋄ :end
[11]  :if 2==P1 ⋄ P1←⎕DC P1 ⋄ :end
[12]  :if 2==P2 ⋄ P2←⎕DC P2 ⋄ :end
[13]  
[14]  Z←×(-/P0×⌽P2-P1)+-/P2×⌽P0
    ∇

Using this function, we can show that the points EX2 and EX3 are all outside the rectangle 
whose floor is 0J0.  For example,  both points in EX2 and the first two points in EX3 are 
above and to the left of the upper short line:

      EX2[0] DirectionLnPt ¯0.5J0.5 1J0
¯1
      EX2[1] DirectionLnPt ¯0.5J0.5 1J0
¯1
      EX3[0] DirectionLnPt ¯0.5J0.5 1J0
¯1 
      EX3[1] DirectionLnPt ¯0.5J0.5 1J0
¯1 
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The third point in EX3 is below and to the right of the lower short line:

      EX3[2] DirectionLnPt 0.5J¯0.5 0J1
1 
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