
Anatomy of An Idiom
Don't see APL characters?

Download SImPL (Unicode)
Download APL385 Unicode

Download Firefox

Introduction

Sometime in the early 1970s while I was working at STSC, Jeff
Lewis, then a customer of ours at The Rouse Company, posed a
challenging APL problem I named Progressive Dyadic Iota:
devise an algorithm to find the index of each element of one
vector in another where each successive element of the right
argument should match the corresponding successive element of
the left argument.

An Example

For example, if the left and right arguments were 'abacba' and
'baabaac', then the result would be

 L←'abacba' ⋄ R←'baabaac'
 L pdi R
2 1 3 5 6 7 4

Notice how the first b in R matches the first b in L at index 2 and
that the second b in R matches the second b in L at index 5, etc.

Labeling

In other words, it was as if the elements of the left and right
arguments had been labeled with subscripts indicating the
successive positions of equal values:

 'a1b1a2c1b2a3' ι 'b1a1a2b2a3a4c1'
2 1 3 5 6 7 4

http://www.getfirefox.com/
http://archive.vector.org.uk/resource/apl385.zip
http://archive.vector.org.uk/resource/simpl02.zip

Ranking To The Rescue

Labeling the successive equal elements of a vector as above is a
job for the ranking function (i.e., ⍋⍋), as in

 L,[0.5] ⍋⍋LιL
 a b a c b a
 1 4 2 6 5 3

which labels the 'a's as 1 2 3, the 'b's as 4 5, and the lone
'c' as 6.

Applying this technique to both arguments and then looking up
the right in the left solves the problem if the arguments satisfy
several conditions:

1. The arguments contain the same set of elements,
2. The number of elements of each value is the same in both

arguments, and
3. The unique elements of both arguments occur in the same

order

 L←'abacba' ⋄ R←'aaabcb'
 L pdi R
1 3 6 2 4 5
 (⍋⍋LιL)ι⍋⍋RιR
1 3 6 2 4 5

Lookup Left

With a little thought, it's easy to see that the third condition can
be eliminated by using the left argument as the lookup vector on
both sides:

 L←'abacba' ⋄ R←'bcabaa'
 L⍪(LιL),[0.5] ⍋⍋LιL
 a b a c b a
 1 2 1 4 2 1
 1 4 2 6 5 3
 R⍪(LιR),[0.5] ⍋⍋LιR
 b c a b a a
 2 4 1 2 1 1
 4 6 1 5 2 3

 L pdi R
2 4 1 5 3 6
 (⍋⍋LιL)ι⍋⍋LιR
2 4 1 5 3 6

A Key Concept

Next, we need a way to equalize the numbering on both sides.
That is, the 'a's are already numbered the same on both sides,
but the 'b's are not necessarily because there might be more
'a's in L than in R. This can be solved by including R in the
lefthand double grade-up and similarly including L on the
righthand side. In other words,

 (⍋⍋LιL,R)ι⍋⍋LιR,L
2 4 1 5 3 6 9 7 11 8 10 12

Notice how this simple but important step of including the other
argument on each side's lookup and ranking each lookup provides
just the right balance. Not incidentally, the algorithm so far is
now independent of the number of elements of each value in both
arguments, thus eliminating the second condition.

Shaping Up

Since we need only the first ρR elements of this expression for
the result, we can reshape the righthand side of the middle iota,
as in

 (⍋⍋LιL,R)ι(ρR)ρ⍋⍋LιR,L
2 4 1 5 3 6

Not Found

With the algorithm so far, if an element of R is not found in L, it'll
be assigned a value of ⎕IO+(ρL)+ρR, but we actually need
⎕IO+ρL. This can be solved by reshaping the lefthand side of the
middle iota to the same shape as L, as in

 L←'abacba' ⋄ R←'bcdabaa'
 ((ρL)ρ⍋⍋LιL,R)ι(ρR)ρ⍋⍋LιR,L
2 4 7 1 5 3 6

thus eliminating the last remaining condition.

All Together Now

Thus, each argument to the middle iota is a ranking of the
respective argument in L such that equal values in the two
arguments have the same ranking on each side. It is this equal
ranking which allows the middle iota to produce the correct result.

In other words, what we have done is similar to the labeling
described above, but the indices are now sequential depending
upon first the total number of 'a's, then the total number of
'b's, etc.

In the example below, there are seven 'a's between the two
arguments, so the 'b's begin numbering with eight, even though
the 'a's are numbered only from one to three in L and one to four
in R. Continuing, there are four 'b's between the two arguments,
so the 'c's begin numbering with twelve (the 'b's start at eight
plus four of them).

Also, note that a4 in R is not found in L, so it is assigned an index
of seven (i.e., ⎕IO+ρL).

 L←'abacba' ⋄ R←'baabaac'
 L pdi R
2 1 3 5 6 7 4
 'a1b8a2c12b9a3' ι 'b8a1a2b9a3a4c12' ⍝ (†)
2 1 3 5 6 7 4
 (ρL)ρ⍋⍋LιL,R
1 8 2 12 9 3
 (ρR)ρ⍋⍋LιR,L
8 1 2 9 3 4 12

Note that the two sets of subscripts in statement (†) are exactly
the left and right arguments to the middle iota. That is, the
subscripts are unique such that we can dispense with the letters
and just use the subscripts which is exactly what is done.

Here's the final function:

 ∇ Z←L pdi R
[1] ⍝ Progressive Dyadic Iota
[2] Z←((ρL)ρ⍋⍋LιL,R)ι(ρR)ρ⍋⍋LιR,L
 ∇

A Related Function

As Dyadic Iota and Epsilon are closely related, it should come as
no surprise that there is a corresponding Progressive Dyadic
Epsilon.

 ∇ Z←L pde R
[1] ⍝ Progressive Dyadic Epsilon
[2] Z←((ρL)ρ⍋⍋LιL,R)∊(ρR)ρ⍋⍋LιR,L
 ∇

That is, pdi and pde differ in their principal (and middle) function,
only.

This latter function has some interesting uses such as in
calculating an Asymmetric Difference between two multisets,
where a multiset is a set (i.e. vector) with repeated elements.
Asymmetric difference is like set difference, but where the
multiplicity of each unique element in the left argument has
subtracted from it the multiplicity of the same valued element in
the right argument. If the difference between the multiplicities is
positive, then that many copies of that element appear in the
result. For multisets with no repeated elements, asymmetric
difference and set difference produce the same results. For more
details about multisets in an APL context, see this page.

For example,

 ∇ Z←L mad R
[1] ⍝ Multiset Asymmetric Difference
[2] Z←(~L pde R)/L
 ∇
 L←6 1 2 3 3 3 4 4 4 2 6 4
 R←1 1 1 1 2 3 3 4 5 5 5
 L mad R
6 3 4 4 2 6 4

Citations

http://wiki.nars2000.org/index.php/Multisets
http://www.iis.uni-stuttgart.de/personen/lippold/MathCollection/Doc/mathCollection/MathSet.html

You might remember this idiom because, purely by accident,
it appears at the very top of the Finn APL Idiom List.
Or this Unicode version of the same Finn APL Idiom List.
Also see J's approach.
This idiom was published in APL Quote-Quad, Volume 4,
Issue 1, September 1972 as the solution to Problem #14 in
my Problems section (thanks to Gary Logan for the
reference).

Fonts

If you have trouble displaying the APL characters on this page,
likely it is due to either a browser setting (or an out-of-date
browser) or a missing font. Both Mozilla Firefox 2.0 or later and
Internet Explorer 7 or later display the APL characters perfectly,
but IE6 has some trouble. If this page doesn't display well with
either APL Unicode font using any version of Internet Explorer,
please try it again with Mozilla Firefox. Links for the two APL
Unicode fonts as well as for Mozilla Firefox appear at the top of
this page.

Author

This page was created by Bob Smith — please direct any
questions or comments about it to me. See my other APL
projects.

© Sudley Place Software 1997-2016.

Comments or suggestions? Send them to sitemaster@sudleyplace.com.

mailto:sitemaster@sudleyplace.com
https://www.societyforscience.org/
http://www.libreoffice.org/
http://www.mozilla.org/products/thunderbird/
http://www.spreadfirefox.com/?q=affiliates&id=43096&t=64
http://www.sudleyplace.com/
http://jigsaw.w3.org/css-validator/check/referer?profile=css3
http://validator.w3.org/check?uri=referer
http://www.sudleyplace.com/APL/projects.html
mailto:bsmith@sudleyplace.com
http://www.jsoftware.com/jwiki/Essays/Progressive_Index-Of
http://aplwiki.com/FinnAplIdiomLibrary
http://nsg.upor.net/jpage/finnapl.pdf

