
A Transform
Hyperator

in APL
Bob Smith

Sudley Place Software
Originally Written

8 Dec 2018
Updated

21 Jul 2019

Introduction
Hyperators1 – as defined by John Scholes4 – are discussed along with
their syntax and various examples. A particular example, presented
here, is the Transform Hyperator which is an instantiation into a single
object of the mathematical concept of a Transform.

Transforms
As the name implies, a Transform changes its data from one
perspective to another. For example, a Fourier Transform may be
thought of as changing data from an equally-spaced quantity that
varies over the time domain to an equally-spaced quantity that varies
over the frequency domain. However, these “domain”s are quite fluid,
as, for example, a Discrete Fourier Transform can also be used to
multiply large numbers as well as perform a Fast Convolution. Some
of the Transforms discussed here are invertible and so it makes sense
to talk of the Inverse Transform.

The APL code in this paper is all in origin-0.

-1-

Hyperators
The sequence of objects: Arrays, Functions, and Operators appear in
ascending order with the property that each later object consumes
one or two of the earlier objects and produces an object in the
sequence one order less.

For example, a Function takes Arrays as its Argument(s) and
produces an Array; an Operator takes Arrays and/or Functions as its
Operand(s) and produces a (derived) Function, which in turn takes
Arrays as its Argument(s) and produces an Array.

Hyperators extend this sequence to the next level in that a Hyperator
takes Arrays, Functions, and/or Operators as its Hyperand(s) and
produces a (derived) Operator which in turn, etc.

That is, in the object hierarchy:

Order Name Options Example

0 Array

1 Function 0, 1, or 2
Arguments

∇Z← f0
∇Z← f1 R
∇Z←L f2 R

2 Operator 0, 1, or 2
Arguments

and

1 or 2
Operands

∇Z← (LO op01)
∇Z← (LO op11) R
∇Z←L (LO op21) R

∇Z← (LO op02 RO)
∇Z← (LO op12 RO) R
∇Z←L (LO op22 RO) R

3 Hyperator 0, 1, or 2
Arguments

∇Z← (LO (LH hy011))
∇Z← (LO (LH hy111)) R
∇Z←L (LO (LH hy211)) R

-2-

and

1 or 2
Operands

and

1 or 2
Hyperands

∇Z← (LO (LH hy021) RO)
∇Z← (LO (LH hy121) RO) R
∇Z←L (LO (LH hy221) RO) R

∇Z← (LO (LH hy012 RH))
∇Z← (LO (LH hy112 RH)) R
∇Z←L (LO (LH hy212 RH)) R

∇Z← (LO (LH hy022 RH) RO)
∇Z← (LO (LH hy122 RH) RO) R
∇Z←L (LO (LH hy222 RH) RO) R

Each Function, Operator, and Hyperator may have any of its lower
order objects as its Arguments, Operands, or Hyperands, respectively.
Missing from the above table due to lack of space is the option for
both Operators and Hyperators of using a Jot (∘) for one or both
Operands or Hyperands to indicate a missing element. Also missing
are the usual function header enhancements such as Axis Operator,
Optional Left Argument, Shy Result, Lists of Names in the Arguments
(but not in Operands nor Hyperands), etc.

Anonymous Hyperators
Following the lead of Scholes4, Anonymous Functions are extended to
Hyperators by defining three new special symbols:

⍺⍺⍺ Left Hyperand
⍵⍵⍵ Right Hyperand
∇∇∇ Hyperator

In the case of Hyperators,

• ∇ references the Hyperator with both its Hyperand(s) and
Operand(s) already bound (that is, ∇ references the entire derived

-3-

http://wiki.nars2000.org/index.php/User-Defined_Functions/Operators/Hyperators
http://wiki.nars2000.org/index.php/Anonymous_Functions/Operators/Hyperators
http://wiki.nars2000.org/index.php/Anonymous_Functions/Operators/Hyperators

function)

• ∇∇ references the Hyperator with only its Hyperand(s) bound (that is,
∇∇ references the Operator part of the Hyperator)

• ∇∇∇ references the Hyperator with neither its Hyperand(s) nor
Operand(s) bound (that is, ∇∇∇ references the Hyperator itself)

In other words,

• for anonymous monadic hyperand monadic operand Hyperators,
∇ ←→ ⍺⍺∇∇ ←→ ⍺⍺ ⍺⍺⍺∇∇∇

• for anonymous monadic hyperand dyadic operand Hyperators,
∇ ←→ ⍺⍺∇∇⍵⍵ ←→ ⍺⍺ ⍺⍺⍺∇∇∇⍵⍵

• for anonymous dyadic hyperand monadic operand Hyperators,
∇ ←→ ⍺⍺∇∇ ←→ ⍺⍺ ⍺⍺⍺∇∇∇⍵⍵⍵

• for anonymous dyadic hyperand dyadic operand Hyperators,
∇ ←→ ⍺⍺∇∇⍵⍵ ←→ ⍺⍺ ⍺⍺⍺∇∇∇⍵⍵⍵ ⍵⍵

Transform Template
A Transform Hyperator is an instantiation into a single object of the
mathematical concept of a Transform, examples5,6 of which include
Fourier7, Fourier Sine8, Fourier Cosine8, Hartley9, Laplace10, Mellin11,
Stirling12, Weierstrass13, Binomial14, Chebyshev15, etc. Because we’re
dealing with discrete computer arithmetic, the Templates discussed in
this paper are all in the category of Discrete Transforms16, as
opposed to continuous Integral Transforms.

For example, a Discrete Fourier Transform (DFT) of a vector of
numbers may be written as:

 DFT ← {⍵+.×*(⍳⍴⍵)∘.×(⍳⍴⍵)×○0J¯2÷⍴⍵} (1)

or more generally as a Dyadic Operator by splitting out the Inner
Product functions (+ and ×) as Operands (⍺⍺ and ⍵⍵) because some
Transforms use different Operands:

 DFT ← +{⍵ ⍺⍺.⍵⍵*(⍳⍴⍵)∘.×(⍳⍴⍵)×○0J¯2÷⍴⍵}× (2)

-4-

or more generally by splitting out the Transform function

 hDFT ← {*(⍳⍴⍵)∘.×(⍳⍴⍵)×○0J¯2÷⍴⍵} (3)

 DFT ← +{⍵ ⍺⍺.⍵⍵ hDFT ⍵}× (4)

or more generally by writing the Transform function as the left
Hyperand of a Monadic Hyperand Dyadic Operand Hyperator:

 DFT ← +hDFT{⍵ ⍺⍺.⍵⍵ ⍺⍺⍺ ⍵}× (5)

Finally, with (⍑ – U+2351, Alt-’B’ on the keyboard) as its symbol17 –
this is the definition of a Transform Hyperator:

 ⍑ ←→ {⍵ ⍺⍺.⍵⍵ ⍺⍺⍺ ⍵} or equivalently as (6)

 ←→ {⍺⍺.⍵⍵∘⍺⍺⍺⍨⍵} (7)

Putting this all together,

 DFT ← +hDFT⍑× (8)

That is, the template for a Transform Hyperator is

 {⍺⍺ ⍺⍺⍺⍑⍵⍵ ⍵} (9)

where ⍺⍺ and ⍵⍵ are the Inner Product Operands and ⍺⍺⍺ is the
Transform Hyperator’s Hyperand, that is, the Transform function itself.

More Transforms
Other Transforms include the following, where we list only the
Hyperands (h) to be used in the template +h⍑× :

 hFourierSine ← {1○(1+⍳⍴⍵)∘.×○(1+⍳⍴⍵)÷1+⍴⍵} (10)

 hFourierCosine ← {2○(0.5+⍳⍴⍵)∘.×○(⍳⍴⍵)÷⍴⍵} (11)

 hHartley ← {+⌿2 1∘.○(⍳⍴⍵)∘.×(⍳⍴⍵)×○2÷⍴⍵} (12)

 hLaplace ← {*(⍳⍴⍵)∘.×-⍳⍴⍵} (13)

 hMellin ← {(1+⍳⍴⍵)∘.*⍳⍴⍵} (14)

 hStirling ← {102‼¨(⍳⍴⍵)∘.,⍳⍴⍵} (15)

where 102‼M N calculates Stirling Numbers of the 2nd kind.

-5-

 hWeierstrass ← {*¯0.25×((⍳⍴⍵)∘.-⍳⍴⍵)*2} (16)

etc.

The following Transforms use a template of -h⍑× (in which case, the
Inner Product reduction function is an Alternating Sum):

 hBinomial ← {(⍳⍴⍵)∘.!⍳⍴⍵} (17)

 hChebyshev ← hFourierCosine (18)

MORE TO BE WRITTEN IN THIS SECTION

Inverses
Note that the Inverse DFT can be expressed as a Hyperator, too:

 iDFT ← +{(*(⍳⍴⍵)∘.×(⍳⍴⍵)×○0J2÷⍴⍵)÷⍴⍵}⍑× (19)

where the DFT and iDFT Hyperands differ only slightly:

 hDFT ← { *(⍳⍴⍵)∘.×(⍳⍴⍵)×○0J¯2÷⍴⍵ } (20)

 hiDFT ← {(*(⍳⍴⍵)∘.×(⍳⍴⍵)×○0J2 ÷⍴⍵)÷⍴⍵} (21)

For example,

 DFT 1 2 3 4

10 ¯2J2 ¯2 ¯2J¯2

 iDFT DFT 1 2 3 4

1 2 3 4

-6-

MORE TO BE WRITTEN IN THIS SECTION

Applications
One interesting way in which the DFT and its inverse can be
combined is to produce a Fast Convolution Algorithm18. Using the
dyadic Convolution operator (⍡) built into NARS2000, the two
concepts are related as described in this Wikipedia article18. The
following code was adapted from Roger Hui’s article19. The above
Wikipedia article shows that Convolution “of two finite-length
sequences is found by taking an FFT of each sequence, multiplying
pointwise, and then performing an inverse FFT”. Here we are using
the notation of DFT where it is understood that an implementation of
DFT and iDFT would translate the problem into FFT and iFFT.

The underlying identity from the Wikipedia article is

 a+⍡×b ←→ iDFT (DFT a2) × DFT b2

where a2 and b2 are extensions of a and b meant to be long enough
to hold the number of digits in the Convolution of a and b.

For example,

 a←5 9 6 0 6 1 9 4 ⋄ b←8 5 2 5 4 1

 ⎕←c←a+⍡×b
40 97 103 73 125 109 122 115 67 63 57 25 4

 N←¯1+(⍴a)+⍴b
 (a2 b2)←N↑¨a b
 d←iDFT (DFT a2) × DFT b2
 ⌊0.5+9○d
40 97 103 73 125 109 122 115 67 63 57 25 4

In practice, DFT and iDFT return Complex floating point numbers

-7-

some of whose Imaginary parts are small but non-zero. Because we
know that the all items in the result should be not only Real numbers
but also Integers, it’s safe to ignore the Imaginary parts (9○) and
round the Real parts (⌊0.5+) by prefacing the expression with
⌊0.5+9○ which produces the above result.

Taking this example one step farther, the result of the Convolution
(and equivalently the inverse DFT of the product of two DFTs) can be
expressed as a Multiple Precision Integer/Rational number in that the
vectors a, b, and c represent the coefficients of a base 10 polynomial
– that is, an Integer. The polynomial coefficients of the result in c
may be greater than 9, which means that each coefficient’s tens digit
and beyond must be carried into the coefficient to its left. This also
explains why in the code below we need to Catenate a leading zero to
c before performing the carry so as to the catch the overflow from the
leftmost coefficient. Were the values in c much larger than two digits,
we might need to Catenate more leading zeros to c in order to handle
the overflow. The carry function is supplied by Hui in his article as

 carry←{1↓+⌿1 0⌽0,0 10⊤⍵}

and used on the result as

 carry⍣≡0,c

Note that the problem of carrying digits to the lefthand position can
also be solved by recasting it as reducing the vector 0,c using the
following function

 carry2←{((⍺,0)+0 10⊤⍬⍴⍵),1↓⍵}

as an operand to reduction as in

 ⊃carry2/0,c

This line is functionally equivalent to carry⍣≡0,c, but much slower.

The following code demonstrates an example of using DFT to multiply
two numbers in two ways – by Convolution and by its equivalent
operation of iDFT of the product of two DFTs. Each number is
represented as a vector of its coefficients.

-8-

The reason for this example becomes clear when you realize that DFT
and iDFT would be implemented as a Fast Fourier Transform (FFT)
and its inverse which are both significantly faster than the Discrete
form. This technique is used especially in Multiple Precision libraries
when multiplying very large Integers as one of several ways to make
such multiplication practical.

 a←5 9 6 0 6 1 9 4 ⋄ b←8 5 2 5 4 1

 ⎕←a1←10x⊥a
59606194
 ⎕←b1←10x⊥b
852541
 a1×b1
50816724238954

 c←a+⍡×b
 10x⊥carry⍣≡0,c
50816724238954

 N←¯1+(⍴a)+⍴b
 (a2 b2)←N↑¨a b
 d←iDFT (DFT a2) × DFT b2
 10x⊥carry⍣≡0,⌊0.5+9○d
50816724238954

MORE TO BE WRITTEN IN THIS SECTION

System Function
As a temporary measure, the released version of NARS2000 provides
a system function ⎕DFT which implements the Discrete Fourier
Transform using a Fast Fourier Transform. This function supports as

-9-

input all Real and Complex datatypes.

This implementation employs three different sources of algorithms for
FFT and its inverse:

• Gnu Scientific Library (GSL) for Fixed Precision arguments,

• MPFFT for MPIR/MPFR Multiple Precision arguments, and

• ARB for Ball Arithmetic arguments,

so there may be some slight differences when comparing the results
across datatypes.

A monadic call to ⎕DFT calculates a Discrete Fourier Transform (using
the usual very fast FFT), as does a dyadic call with a left argument of
1. A dyadic call with a left argument of ¯1 calculates the inverse DFT
(this time using the usual very fast Inverse FFT).

Extending the arguments to a length which is a power of two (as
required by the FFT algorithm for maximum efficiency) is handled
within the system function.

This system function is temporary only – when the idea of Hyperators
comes to fruition, the system function will be removed in favor of
calling the corresponding Transform Hyperator.

MORE TO BE WRITTEN IN THIS SECTION

Timings
FWIW, using the form

 ¯1 ⎕DFT(⎕DFT a2)×⎕DFT b2

on million-digit numbers a2 and b2 (represented as million-element
vectors of 64-bit integers 0 through 9), takes less than 7 seconds to

-10-

calculate. Using the equivalent (but slower) method of Convolution
(a+⍡×b) takes so much time as to exhaust my patience. At the other
end of the timing extreme, multiplication of the same numbers
represented as million-digit Multiple Precision Integers (a1×b1), takes
less than 0.1 seconds.

 (a1 b1)←?2⍴10*1E6x
 ⎕T-(a1×b1)⊢⊢⎕T
0.06809538643574342

MORE TO BE WRITTEN IN THIS SECTION

Implementation
The above listed Hyperands along with their corresponding Operands
are entirely executable, however that might not yield the highest
performance. Instead the Hyperand/Operand combination can serve
as a recognizable template which then triggers execution under the
hood of a higher performance algorithm, such as the aptly named
(and significantly faster) Fast Fourier (and Inverse) Transforms in
place of the Discrete Fourier Transform and its Inverse.

For example, the implementation of the Transform Hyperator (⍑)
checks its two Operands and one Hyperand – if they are identically
+hDFT⍑×, or +hiDFT⍑× then the FFT or iFFT code is executed.

-11-

MORE TO BE WRITTEN IN THIS SECTION

Acknowledgments
No paper is written in isolation, and this paper is no exception. I’d like
to thank YOUR NAME GOES HERE for their helpful advice,
suggestions, and examples.

Online Version
This paper is an ongoing effort and can be out-of-date the next day.
You may find the most recent version at http://sudleyplace.com/APL / –
look for the title of this paper there.

Executable Version
All of the above APL code may be executed in NARS2000, an
experimental APL interpreter available for free as Open Source
software. Also, a workspace is available which contains the above
Hyperands and other code:

http://nars2000.org/download/workspaces/Hyperators.ws.nars

The latest Gamma version of NARS2000 implements Hyperators in
the form of User-Defined2 and Anonymous3 Functions as well as The
Transform Hyperator (⍑). It may be downloaded from
http://www.nars2000.org/download/ binaries/ gamm a / in either 32- or
64-bit versions. This software runs natively under Microsoft Windows
Win7 or later as well as any Linux or Mac OS version which supports
Wine (32-bit only) which acts as a translation layer.

References
1. Hyperators, NARS2000 Wiki,

http://wiki.nars2000.org/index.php/Hyperators

-12-

http://wiki.nars2000.org/index.php/Hyperators
http://www.nars2000.org/download/binaries/beta/
http://www.nars2000.org/download/binaries/beta/
http://www.nars2000.org/download/binaries/beta/
http://www.nars2000.org/download/binaries/beta/
http://www.nars2000.org/download/binaries/gamma/
http://sudleyplace.com/APL

2. User-defined Functions, Operators, and Hyperators, NARS2000
Wiki, http://wiki.nars2000.org/index.php/User-Defined_Functions/
Operators/Hyperators

3. Anonymous Functions, Operators, and Hyperators, NARS2000
Wiki,
http://wiki.nars2000.org/index.php/Anonymous_Functions/Operato
rs/Hyperators

4. “The San Quirico Moot”, 4-10 June 2007, “Hyper-operators”, John
Scholes, http://archive.vector.org.uk/art10011760

5. Integral Transforms, Wikipedia,
https://en.wikipedia.org/wiki/Integral_transform#Table_of_transfor
ms

6. Integral Transforms, Wikipedia,
https://en.wikipedia.org/wiki/List_of_transforms#Integral_transform
s

7. Discrete Fourier Transform, Wikipedia,
https://en.wikipedia.org/wiki/Discrete_Fourier_transform

8. Sine and Cosine Transforms, Wikipedia,
https://en.wikipedia.org/wiki/Sine_and_cosine_transforms

9. Hartley Transform, Wikipedia,
https://en.wikipedia.org/wiki/Hartley_transform

10. Laplace Transform, Wikipedia,
https://en.wikipedia.org/wiki/Laplace_transform

11. Mellin Transform, Wikipedia,
https://en.wikipedia.org/wiki/Mellin_transform

12. Stirling Transform, Wikipedia,
https://en.wikipedia.org/wiki/Stirling_transform

13. Weierstrass Transform, Wikipedia,
https://en.wikipedia.org/wiki/Weierstrass_transform

14. Binomial Transform, Wikipedia,
https://en.wikipedia.org/wiki/Binomial_transform

-13-

https://en.wikipedia.org/wiki/Binomial_transform
https://en.wikipedia.org/wiki/Weierstrass_transform
https://en.wikipedia.org/wiki/Stirling_transform
https://en.wikipedia.org/wiki/Mellin_transform
https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Hartley_transform
https://en.wikipedia.org/wiki/Sine_and_cosine_transforms
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/List_of_transforms#Integral_transforms
https://en.wikipedia.org/wiki/List_of_transforms#Integral_transforms
https://en.wikipedia.org/wiki/Integral_transform#Table_of_transforms
https://en.wikipedia.org/wiki/Integral_transform#Table_of_transforms
http://archive.vector.org.uk/art10011760
http://wiki.nars2000.org/index.php/Anonymous_Functions/Operators/Hyperators
http://wiki.nars2000.org/index.php/Anonymous_Functions/Operators/Hyperators
http://wiki.nars2000.org/index.php/User-Defined_Functions/Operators/Hyperators
http://wiki.nars2000.org/index.php/User-Defined_Functions/Operators/Hyperators

15. Discrete Chebyshev Transform, Wikipedia,
https://en.wikipedia.org/wiki/Discrete_Chebyshev_transform

16. Discrete Transforms, Wikipedia,
https://en.wikipedia.org/wiki/List_of_transforms#Discrete_transfor
ms

17. Note that the Unicode name for this symbol is UpTackOverbar
(U+2351), not DownTackOverbar. For consistency with other
related names in NARS2000, I will refer to it as DownTackOverbar.

18. Fast Convolution Algorithms, Wikipedia,
https://en.wikipedia.org/wiki/Convolution#Fast_convolution_algorit
hms

19. Hui, Roger, Dyalog dfns workspace on “Fast multi-digit product
using FFT”, http://dfns.dyalog.com/n_xtimes.htm

-14-

http://dfns.dyalog.com/n_xtimes.htm
https://en.wikipedia.org/wiki/Convolution#Fast_convolution_algorithms
https://en.wikipedia.org/wiki/Convolution#Fast_convolution_algorithms
https://en.wikipedia.org/wiki/Convolution#Fast_convolution_algorithms
https://en.wikipedia.org/wiki/List_of_transforms#Discrete_transforms
https://en.wikipedia.org/wiki/List_of_transforms#Discrete_transforms
https://en.wikipedia.org/wiki/Discrete_Chebyshev_transform

