
A Matrix Operator in APL
Bob Smith

Sudley Place Software
bsmith@sudleyplace.com

Originally Written
30 Jul 2017

Updated
10 Sep 2017

PRELIMINARY

Introduction
Normally in APL when applying a scalar function to a matrix, the matrix 
is viewed as a container of its scalar elements and the scalar function 
applies to the individual elements.  Matrix functions are different – in this
case, the scalar function applies to the matrix as a whole2, that is they 
treat the matrix as a new datatype.  This concept is identical to that of 
the Multiset3 operator where functions such as IndexOf (L⍳⍦R) and 
MemberOf (L∊⍦R) take on new meaning in that their arguments are 
treated as a new datatype, that is, sets with repeated elements where 
the repetitions play an integral role when calculating the result.  
Similarly, the Transpose, Matrix Inverse, and Matrix Divide functions and
Inner Product and Determinant operators all apply to the matrix as a 
whole.

In the same manner, the (monadic) Matrix operator applies its (scalar 
function) operand to its matrix (right) argument as a new datatype to 
which the function (left operand) is applied.  Not all scalar functions 
have been extended to matrices, but a large number have and are in 
use in various scientific fields.  For the nonce, this operator applies its 

-1-



function operand to diagonalizable5 fixed-precision Real matrices 
only.

Matrix functions date back to at least 1858 when A. Cayley wrote about 
matrix Square Roots.  Their applications are many and varied.  Here’s a
list of the section headings in Nicholas J. Higham’s “Functions of 
Matrices”11, Chapter 2, Applications:

● Differential Equations
● Exponential Integrators
● Nuclear Magnetic Resonance
● Markov Models
● Control Theory
● The Nonsymmetric Eigenvalue Problem
● Orthogonalization and the Orthogonal Procrustes Problem
● Theoretical Particle Physics
● Other Matrix Functions
● Nonlinear Matrix Equations
● Geometric Mean
● Pseudospectra
● Algebras
● Sensitivity Analysis

Properties of a Matrix Function
In order to be worthy of study, a matrix function must have some useful 
and interesting properties where f is a function defined on square 
Complex matrices and X is a non-singular conformable square matrix:

f(A) commutes with A:  A+.×f⌻A ←→ (f⌻A)+.×A
f⌻⍉A ←→ ⍉f⌻A
f⌻X+.×A+.×⌹X ←→ X+.×(f⌻A)+.×⌹X

and many more.

-2-



Definition of a Matrix Function
There are multiple ways to define how a matrix function works.  One 
way are to split into cases of diagonalizable and non-diagonalizable 
matrices.  The latter case is not treated here.

Diagonalizable Matrices
A matrix A is diagonalizable5 if there exists an invertible unitary matrix P 
and a diagonal matrix D such that A≡P+.×D+.×⌹P.  Showing their 
sense of humor, mathematicians call a non-diagonalizable matrix 
defective.  The process of finding the matrices P and D above involves 
computing the Eigenvalues and Eigenvectors of the matrix A.

Eigenvalues and Eigenvectors
These concepts1 from Linear Algebra and Matrix Theory define the 
characteristic values and vectors of the linear transformation 
represented by a matrix.  Every square simple Real numeric matrix has 
(possibly Complex) Eigenvalues and Eigenvectors.  To calculate these 
objects in NARS2000, use the Variant operator with a left operand of the
Domino function and a right operand of an integer scalar as described 
in the following table:

-3-



Z←(⌹⍠1) R Z is a Complex floating point vector of the Eigenvalues

Z←(⌹⍠2) R Z is a Complex floating point matrix of the Eigenvectors
one per column

Z←(⌹⍠3) R Z is a Nested two-element vector with a Complex 
floating point vector of the Eigenvalues in the first 
element and a Complex floating point matrix of the 
Eigenvectors in the second

Z←(⌹⍠4) R Z is a Nested three-element vector with a Complex 
floating point vector of the Eigenvalues in the first 
element, a Complex floating point matrix of the 
Eigenvectors in the second, and a Real matrix of Schur
vectors one per column in the third

In particular, if the matrix A is diagonalizable, then the Eigenvalues and 
Eigenvectors of A are exactly the components of its diagonalizable 
representation using the helper function Diag:

      Diag←{
➥A←(2⍴⍴⍵)⍴0
➥⋄ A[,¨⍨⍳⍴⍵]←⍵
➥⋄ A
➥}
      Diag 1 2 3
1 0 0
0 2 0
0 0 3
      (Eval Evec)←⌹⍠3 A
      A≡Evec+.×(Diag Eval)+.×⌹Evec
1

This latter form then yields a definition of a function f applied to matrix 
as a Matrix Function:

-4-



      (Eval Evec)←⌹⍠3 A
      Evec+.×(Diag f Eval)+.×⌹Evec

Structured as a Matrix Operator, this becomes

      MatOpr←{
➥⍺←⊢                 ⍝ Optional left argument
➥⋄ (Eval Evec)←⌹⍠3 ⍵ ⍝ Eigenvalues/vectors
➥⋄ Evec+.×(Diag ⍺ ⍺⍺ Eval)+.×⌹Evec
➥}

With this enhancement, many more functions can be extended to work 
on matrices as a whole.  For example, we can use this to calculate the 
factorial of a diagonalizable matrix:

      M←2 2⍴1 3 2 1
      M
1 3
2 1
      !MatOpr M
3.6274 8.8423
5.8949 3.6274
      *MatOpr M
 15.86  19.136
 12.758 15.86
      ⍟MatOpr M
0.80472J1.5708  0.53094J¯1.9238
0.35396J¯1.2825 0.80472J1.5708
      ⍟MatOpr *MatOpr M
1 3
2 1

The above examples show how various functions such as 
Exponentiation and Logarithm can be extended to work on square Real 
matrices as a whole matrix.  The last example demonstrates that these 

-5-



Matrix functions work as expected with their inverse.

In turn, this operator can be used to calculate the Factorial of a  
Complex number:

      CplexFact←{
➥⎕IO←1
➥⋄ (a b)←>⍵         ⍝ Coefficients of a Complex #
➥⋄ M←2 2⍴a (-b) b a ⍝ Matrix rep of a ...
➥⋄ F←!MatOpr M      ⍝ Matrix factorial of ...
➥⋄ <9○1⌷[2] F       ⍝ Factorial of a Complex #
➥}
      CplexFact 1J2
 0.11229J0.32361
      !1J2
 0.11229J0.32361

where the latter expression uses the Gnu Scientific Library Complex 
number routines to calculate the Factorial of a Complex number.

In a similar manner, using the appropriate 4×4 matrix representation of 
a Quaternion, its Factorial can be calculated which is the algorithm used
in the implementation:

      !<⍳4
0.0060975i¯0.0010787j¯0.001618k¯0.0021573

A Matrix Operator
The MatOpr operator has been implemented as a primitive operator in 
the Alpha version of NARS2000.  The symbol for the Matrix Operator is 
QuadJot (⌻, U+233B) (Alt-’F’ or Ctrl-’F’ depending upon your keyboard 
layout).  The left operand is either a Jot (∘) or the scalar function to be 
applied to the entire matrix.  For example,

-6-



      M
1 3
2 1
      !⌻M
3.6274 8.8423
5.8949 3.6274
      *⌻M
 15.86  19.136
 12.758 15.86
      ⍟⌻M
0.80472J1.5708  0.53094J¯1.9238
0.35396J¯1.2825 0.80472J1.5708
      ⍟⌻*⌻M
1 3
2 1
      A←(?3 3⍴10)÷100
      A≡¯1○⌻1○⌻A
1

Squaring a matrix can be done using the Commute operator as in 
2*⍨⌻M which is logically the same as M+.×M., or +.×⍨M.

Moreover, with a left operand of a Jot, the Matrix Operator provides two 
new functions:

Diagonal Matrix
If the right argument to the derived function ∘⌻ is a vector,

      ∘⌻⍳4
1 0 0 0
0 2 0 0
0 0 3 0

-7-



0 0 0 4

produces a diagonal matrix, which is also a new way to produce an 
identity matrix: ∘⌻N⍴1.  This function also produces block diagonal 
matrices from a nested vector of matrices, vectors, and scalars:

      ∘⌻(2 2⍴⍳4x)(3 3⍴⍳9v)10(20 30)
1 2 0 0 0  0  0  0
3 4 0 0 0  0  0  0
0 0 1 2 3  0  0  0
0 0 4 5 6  0  0  0
0 0 7 8 9  0  0  0
0 0 0 0 0 10  0  0
0 0 0 0 0  0 20  0
0 0 0 0 0  0  0 30

Matrix Representation
If the right argument to the derived function ∘⌻ is a Hypercomplex 
scalar,

      ∘⌻123456789
123456789

      ∘⌻<⍳2
1 ¯2
2  1

      ∘⌻<⍳4
1 ¯2 ¯3 ¯4
2  1 ¯4  3
3  4  1 ¯2
4 ¯3  2  1

produces one of the several equivalent matrix representations for Real, 
Complex9, and Quaternions10 right arguments only.

-8-



These two derived functions for Diagonal Matrix and Matrix 
Representation seem to conflict on a simple Real scalar versus a simple
one-element Real vector, however in fact they are identical as they have
the same value and shape:

      (∘⌻N)≡∘⌻,N←123456789
1

In general, a Hypercomplex number has a matrix representation if the 
matrix representation is both additive and multiplicative.  That is, for 
Hypercomplex a and b, if

(∘⌻a+b)≡(∘⌻a)+  ∘⌻b
(∘⌻a×b)≡(∘⌻a)+.×∘⌻b

Unfortunately, because Octonions are not associative, no matrix 
representation of Octonions satisfies the multiplicative property.  
However, an excellent paper by Yongge Tian8 shows how to represent 
Octonions in a left and right matrix form with several restrictions on how 
the matrix representations behave.  In the Alpha version of NARS2000, 
the left and right matrix representations are distinguished by making the 
matrix representation function (∘⌻) on Octonions sensitive to the system
variable ⎕DQ which may also be specified through the Variant operator 
as follows:

      om←{∘⌻⍠'l' ⍵} ⍝ Left matrix representation
      nu←{∘⌻⍠'r' ⍵} ⍝ Right ...

      om <⍳8
1 ¯2 ¯3 ¯4 ¯5 ¯6 ¯7 ¯8
2  1 ¯4  3 ¯6  5  8 ¯7
3  4  1 ¯2 ¯7 ¯8  5  6
4 ¯3  2  1 ¯8  7 ¯6  5
5  6  7  8  1 ¯2 ¯3 ¯4
6 ¯5  8 ¯7  2  1  4 ¯3
7 ¯8 ¯5  6  3 ¯4  1  2
8  7 ¯6 ¯5  4  3 ¯2  1

-9-



      nu <⍳8
1 ¯2 ¯3 ¯4 ¯5 ¯6 ¯7 ¯8
2  1  4 ¯3  6 ¯5 ¯8  7
3 ¯4  1  2  7  8 ¯5 ¯6
4  3 ¯2  1  8 ¯7  6 ¯5
5 ¯6 ¯7 ¯8  1  2  3  4
6  5 ¯8  7 ¯2  1 ¯4  3
7  8  5 ¯6 ¯3  4  1 ¯2
8 ¯7  6  5 ¯4 ¯3  2  1

Note that neither the left (written as ω(a) in Tian’s paper) nor right 
(ν(a)) matrix representation of Octonions is multiplicative in that the 
matrix representation of the product of two Octonions is not the product 
of their matrix representations.  However, it is the case for Octonions a 
and b that a more complicated relationship exists8 such that

(om a×b)≡(nu a)+.×((om a)+.×om b)+.×⌹nu a
(nu a×b)≡(om b)+.×((nu b)+.×nu a)+.×⌹om b

or alternatively

(om a×b)≡((om a)+.×om b)+((om a)+.×nu b)-(nu b)+.×om a
(nu a×b)≡((nu b)+.×nu a)+((om b)+.×nu a)-(nu a)+.×om b

and that the left and right matrix representations are related by

      K8←∘⌻1,7⍴¯1
      (nu a)≡K8+.×(⍉om a)+.×K8

Note that the above definition of K8 differs from the one in Tian's paper 
where it is defined as K8←∘⌻K4 I4.

Simplifying
The above functions Diag, MatOpr, and CplexFact may be simplified
in the light of the new operator and its derived functions.

      Diag←∘⌻
      MatOpr←⌻

-10-



      HyperFact←{⍝ Hypercomplex version of CplexFact
➥⎕IO←1
➥⋄ M←∘⌻⍵      ⍝ Matrix rep of a Hypercomplex #
➥⋄ F←!⌻M      ⍝ Matrix factorial of ...
➥⋄ <9○1⌷[2] F ⍝ Factorial of a Hypercomplex #
➥}

or more simply and generally as a shallow depth (≤1) scalar function:

      HyperFact←{⍝ Hypercomplex version of CplexFact
➥⎕IO←1 ⋄ <¨9○1⌷[2]¨!⌻¨∘⌻¨⍵
➥}
      HyperFact 1J2 3J4
 0.11229J0.32361 0.70586J¯0.49674
      !1J2 3J4
 0.11229J0.32361 0.70586J¯0.49674
      HyperFact <2 1 4⍴⍳8
0.0060975i¯0.0010787j¯0.001618k¯0.0021573
 0.010645i0.0039216j0.0045752k0.0052288
      !<2 1 4⍴⍳8
0.0060975i¯0.0010787j¯0.001618k¯0.0021573
 0.010645i0.0039216j0.0045752k0.0052288

Restrictions
For the moment, only diagonalizable5 matrices are in the domain of this 
operator’s derived functions (i.e., M≡⊢⌻M).  The Spectral Radius of a 
matrix R is defined to be largest of the absolute values of the 
Eigenvalues of the matrix, i.e., ⌈/|(⌹⍠1) R.

Certain functions have additional restrictions [More examples needed]:

A matrix has a logarithm if and only if it is invertible, that is, 0≠-.×M.

-11-

https://en.wikipedia.org/wiki/Invertible_matrix


Matrix square roots are multi-valued.  For example, “the matrix 2 2⍴33
24 48 57 has square roots 2 2⍴1 4 8 5 and 2 2⍴5 2 4 7, as well
as their additive inverses”4, so that the identity M≡2*⍨⌻√⌻M is more 
likely to hold than is M≡√⌻2*⍨⌻M.

Matrix trigonometric functions6 whose range on scalars is [¯1, 1] are 
valid iff the Spectral Radius of the matrix is ≤1, that is all of the 
Eigenvalues are in the same range as for the scalar functions.

...

Inverse Functions
[More examples needed]

M≡¯1○⌻1○⌻M

...

Identities
[More examples needed]

Subject to the above restrictions which is the matrix operator analog of 
1 = e-x × ex:

      (∘⌻(≢M)⍴1)≡(*⌻-M)+.×*⌻M

The following identity is the matrix operator form of the Pythagorean 
Trigonometric Identity (sin2θ + cos2θ = 1):

      ((2*⍨⌻1○⌻M)+2*⍨⌻2○⌻M)≡∘⌻(≢M)⍴1

-12-



...

Disclaimers
Some of the above matches (e.g., A≡B) against an identity matrix might 
fail because the off-diagonal elements of the identity matrix are all zero, 
but the corresponding elements on the other side of the match are close
to but not equal to zero.  Modulo this difference, the matches are 
correct.

Some of the above examples (e.g., !<⍳4) might run as indicated in the 
32-bit version of NARS2000, but not the 64-bit version (and possibly 
vice versa).  I’ve traced this down to a difference in the result of a GSL 
function between the 32- and 64-bit version of GSL.  I’m still exploring 
this bug.

Online Version
This paper is an ongoing effort and can be out-of-date the next day. To
find the most recent version, go to http://sudleyplace.com/APL/ and
look for the title of this paper on that page. 

References
1. Wikipedia, “Eigenvalues and Eigenvectors”, 
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

2. Wikipedia, “Matrix Function”, 
https://en.wikipedia.org/wiki/Matrix_function

3. “Multisets”, http://wiki.nars2000.org/index.php/Multisets
4. Wikipedia, “Square Root of a Matrix”, 
https://en.wikipedia.org/wiki/Square_root_of_a_matrix#Properties

5. Wikipedia, “Diagonalizable Matrix”, 
https://en.wikipedia.org/wiki/Diagonalizable_matrix

6. Wikipedia, “Trigonometric functions os matrices”, 
https://en.wikipedia.org/wiki/Trigonometric_functions_of_matrices

-13-

https://en.wikipedia.org/wiki/Trigonometric_functions_of_matrices
https://en.wikipedia.org/wiki/Diagonalizable_matrix
https://en.wikipedia.org/wiki/Square_root_of_a_matrix#Properties
http://wiki.nars2000.org/index.php/Multisets
https://en.wikipedia.org/wiki/Matrix_function
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors


7. Wikipedia, “Pythagorean Trigonometric Identity”, 
https://en.wikipedia.org/wiki/Pythagorean_trigonometric_identity

8. Tian, Yongge, “Matrix Representations of Octonions and Their 
Applications”,  arXiv:math/0003166 [math.RA]

9. Wikipedia, “Complex Number Matrix Representation”, 
https://en.wikipedia.org/wiki/Complex_number#Matrix_representation
_of_complex_numbers

10. Wikipedia, “Quaternion Matrix Representation”, 
https://en.wikipedia.org/wiki/Quaternion#Matrix_representations

11. Higham, Nicholas J. (2008). Functions of matrices theory and 
computation. Philadelphia: Society for Industrial and Applied 
Mathematics. ISBN 9780898717778, 
http://epubs.siam.org/doi/abs/10.1137/1.9780898717778

-14-

http://epubs.siam.org/doi/abs/10.1137/1.9780898717778
https://en.wikipedia.org/wiki/Special:BookSources/9780898717778
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Quaternion#Matrix_representations
https://en.wikipedia.org/wiki/Complex_number#Matrix_representation_of_complex_numbers
https://en.wikipedia.org/wiki/Complex_number#Matrix_representation_of_complex_numbers
https://arxiv.org/abs/math/0003166
https://en.wikipedia.org/wiki/Pythagorean_trigonometric_identity

