
A Glitch In Grade
Don't see APL characters?

Download SImPL (Unicode)
Download APL385 Unicode

Download Firefox

Introduction

While implementing Howard J. Smith, Jr.'s clever algorithm for
dyadic character grade, I encountered a puzzle the explanation of
which illuminates just how this primitive achieves its remarkable
result. Moreover, there are free implementations of the comparison
routine of this primitive in other languages (C, Perl, PHP).

Note that throughout this presentation the index origin is 0.

Sensible Sorting

Back in the dark ages, sorting started out as a simple idea: A < B
< C Along the way, various algorithms provided better and
better performance, but the algorithm to compare two rows
changed very little. Then, there came multiple alphabets (upper
and lower case, etc.) and the problems began. As Smith points out
in his APL79 article, when this issue was discussed, one camp
wanted the two alphabets to be sequential (ab...zAB...Z) and
another camp wanted them to be interspersed (aAbB...zZ, or
should it be AaBb...Zz?). The two choices of alphabet orderings
can be thought of as either sort on case (sequential) or sort on
spelling (interspersed). Both camps could produce examples where
the other's choice failed to do what was expected.

It wasn't until the problem was considered in an APL context that
the logjam was broken. Smith changed the comparison algorithm so
as to perform a major sort on spelling and a minor sort on case —
all at the same time!

http://portal.acm.org/citation.cfm?id=804449&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?doid=390009.804449
http://www.getfirefox.com/
http://archive.vector.org.uk/resource/apl385.zip
http://archive.vector.org.uk/resource/simpl02.zip

Smith's idea was to break the one-dimensional mold of the
collating sequence and use multiple dimensions to distinguish
major from minor sort orders. That is, the characters in two of the
rows of the matrix to be sorted are compared with respect to their
indices within a multi-dimensional collating sequence. Differences
in the indices along the rightmost axis are more significant than
differences along the rows which are more significant than
differences along the planes, etc.

For example, to sort on spelling (major) and case (minor) with
upper case before lowercase, use

⎕←cs2a← 2 27 ρ'␢ABCDEFGHIJKLMNOPQRSTUVWXYZ',
'␢abcdefghijklmnopqrstuvwxyz'

␢ABCDEFGHIJKLMNOPQRSTUVWXYZ
␢abcdefghijklmnopqrstuvwxyz

where the Blank Symbol (␢) is used in place of a space when
specifying collating sequences as a visible reminder of its presence.

This two-dimensional collating sequence sorts the matrix in the
lefthand column unchanged, which is exactly what we want. To sort
the same matrix, but with lowercase before uppercase, switch the
two rows of cs2a, to yield the matrix in the righthand column.

Upper < Lower Lower < Upper
AM
Am
am
AMA
Amazon
pH
PhD

am
Am
AM
AMA
Amazon
pH
PhD

Here's why: The fundamental idea behind Smith's algorithm is
that when two rows in a matrix compare equally w.r.t. one
dimension's collating sequence, shift to the preceding dimension to
break the tie, etc. This means that you should construct collating
sequences such that the major sort order is in the last dimension,
the next most important sort order is in the next to the last
dimension, and so forth. Thus dimensions in the collating
sequence take the place of multiple sorting passes. Once again,

APL subsumes looping into its primitive functions so the
programmer doesn't have to bother with all the messy house
keeping.

For example: Using cs2a and comparing rows AM and Am using the
last dimension, they are equal, both having column indices of 1 for
A and 13 for Mm. Comparison then shifts to the rows, where the row
indices for AM are 0 0, and the row indices for Am are 0 1. This
means that AM sorts before Am, as desired.

Sorting The Unknown

An interesting side effect of Smith's algorithm is that if it
encounters a character not in the collating sequence, it pushes that
character to the very end. For example, using cs2a, the following
matrix is sorted unchanged:

a%
a*
a?
a:.
a.:
a!@#
a#!@
a@#!

Here's why: Smith's algorithm groups equal length rows which are
otherwise equal because the space in the collating sequence ('␢')
precedes all characters. Although the various rows in the example
above don't look identical, they are equal as far as the collating
sequence is concerned. Remember that the special characters in
the above matrix do not appear in the collating sequence, so they
are treated as equal. We'll see why this feature is important
shortly.

Sorting Numerically Without Numbers, Part I

How many times have you seen labels such as the ones in the
lefthand column sorted into the mish-mash in the second column?

Before After
cs2b

After
cs2a

After cs2b then
cs2a

L23
L3
L11
L10
L12
L13
L2
L22
L1
L21
L100

L1
L10
L100
L11
L12
L13
L2
L21
L22
L23
L3

L3
L2
L1
L23
L11
L10
L12
L13
L22
L21
L100

L1
L2
L3
L10
L11
L12
L13
L21
L22
L23
L100

Collating sequence cs2b illustrates how to achieve the brain-dead
sorting in column two, which is why you want to avoid using a one-
dimensional lexicographic sort:

⎕←cs2b←
2 37 ρ

'␢ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789',
'␢abcdefghijklmnopqrstuvwxyz␢␢␢␢␢␢␢␢␢␢'

␢ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
␢abcdefghijklmnopqrstuvwxyz␢␢␢␢␢␢␢␢␢␢

The above collating sequence considers numbers (really digits) to
be just another set of characters in the alphabet, which is why it
fails to produce a desirable result. More accurately, it fails because
the problem requires two passes: one to group equal length rows,
and one to sort the numbers.

Note how sorting with cs2a groups the equal length rows together
as discussed above in Sorting The Unknown. This means that if
we first sort by cs2b and then by cs2a, we'd get the desired order
as in the last column.

Rather than performing two consecutive sorts, we can do it in one,
if we're clever enough.

The idea is to sort numbers in a separate dimension from the
alphabets. That is, distinguishing differences in spelling from case
requires a two-dimensional collating sequence. To distinguish
letters from numbers, we need another dimension.

This three-dimensional collating sequence is essentially cs2a with
another dimension tacked onto it, such as this 10 by 2 by 28 array
which was, for many years, the "standard" way to sort these

arrays:

cs3a← 10 2 28 ρ '␢'
cs3a[0;0;]←'␢ABCDEFGHIJKLMNOPQRSTUVWXYZ␢'
cs3a[0;1;]←'␢abcdefghijklmnopqrstuvwxyz␢'
cs3a[;0;27]←'0123456789'

Actually, the version of this collating sequence that persisted for
many years included the additional (but unnecessary) statement

cs3a[1;1;]←cs3a[0;1;]

This collating sequence goes through three separate sorts — minor,
middle, and major. The minor sort is for numbers (and is the sole
purpose of the first — length 10 — dimension of the array), the
middle sort is for case (the dimension of length 2), and the major
sort is for spelling (the dimension of length 28).

Sorting Numerically Without Numbers, Part II

Say you have some file names such as

rfc2086.txt
rfc3.txt
rfc822.txt

and you would like them sorted in numeric order:

rfc3.txt
rfc822.txt
rfc2086.txt

Again, Smith's algorithm let's you do this, but the above collating
sequence cs3a needs a minor adjustment because of the period
separating the filename from its extension:

cs3b← 10 2 29 ρ '␢'
cs3b[0;0;]←'␢ABCDEFGHIJKLMNOPQRSTUVWXYZ.␢'
cs3b[0;1;]←'␢abcdefghijklmnopqrstuvwxyz␢␢'
cs3b[;0;28]←'0123456789'

The reason we need to include a period in the collating sequence is
that without it, that character is sorted to the end of the alphabet,
hence when the major sort is made, that character forces that row

to occur later. In particular, a set of rows of similar form to the
ones above are sorted such that all rows with a period in the same
column are sorted together and rows with a period earlier in the
row are sorted later in the result.

Of course, the same reasoning applies to any character not in the
given collating sequence.

A Glitch

Alas, this wonderful algorithm can't do everything you might want
with just one collating sequence, as the following example shows.
Above, we maligned collating sequence cs2b, however it has its
uses. It produces exactly what we want from the following matrix:

Before After cs2b After cs3b
1.700
1.02
1.001
1.010
1.702
1.7
1.3

1.001
1.010
1.02
1.3
1.7
1.700
1.702

1.3
1.7
1.02
1.001
1.010
1.700
1.702

Here's why: Collating sequence cs2b works in this instance
because it doesn't have a separate pass to group rows by equal
length. For that same reason, note how our much vaunted cs3b
produces a less than optimal result. So, as always, know your data
and choose a collating sequence appropriate to it.

Another way of looking at why cs3b failed to provide the desired
result is that because the second column of the matrix is all the
same value, that column is effectively ignored, and the matrix is
sorted according to the remaining columns. As those columns
contain only numbers, we get the actual (and, to me, unexpected)
result because 13 < 17 < 102 < 1001 < 1010 < 1700 < 1702.

Removing the decimal point from the example might change the
way you view this.

With either of the collating sequences cs3a or cs3b, the following
matrix sorts unchanged:

2b7
2b8
8b8
2b08

If the row consisting of '8b8 ' is changed to, say, '8a8 ' or '8c8
', then that row is indeed sorted last, so the values in that column
are significant; however when they are all the same that column is
ignored.

Second Verse, Same As The First

No good idea is invented just once, as is the case with Smith's. In
fact, his idea has been re-invented at least twice:

In 1996, Stuart Cheshire came up with an idea he called
Natural Order Numerical Sorting for the Apple Macintosh.

His approach was to sort numbers in strings numerically rather
than lexicographically. It applies to numbers only, not to
alphabetic characters, so it doesn't handle case differences.

In 2000, Martin Pool came up with an idea he called Natural
Order String Comparison. His idea is essentially the same as
Cheshire's in that it applies to numbers in strings, only.

There are several implementations of this algorithm, all of
which seem to trace back to either Cheshire or Pool.

However, Pool's algorithm (I don't have access to a Mac to try
Cheshire's) handles the glitch mentioned above better than does
Smith's. It was when I tried the examples mentioned on his web
page (x2-g8 < x2-y7 < x2-y08 < x8-y8) that I found the glitch in
Smith's algorithm.

Other Languages

My original goal was to implement Smith's algorithm in other
languages so I could use it elsewhere, and I succeeded. You can

download a ZIP archive with implementations in C, Perl, and
PHP. Each file in the ZIP archive contains a subroutine suitable for
calling via one of the language's sort routines along with a test bed

http://www.sudleyplace.com/APL/aplcmp.zip
http://sourcefrog.net/projects/natsort/
http://www.naturalordersort.org/

which sorts three example arrays.

Fonts

If you have trouble displaying the APL characters on this page,
likely it is due to either a browser setting (or an out-of-date
browser) or a missing font. Both Mozilla Firefox 2.0 or later and
Internet Explorer 7 or later display the APL characters perfectly, but
IE6 has some trouble. If this page doesn't display well with either
APL Unicode font using any version of Internet Explorer, please try
it again with Mozilla Firefox. Links for the two APL Unicode fonts as
well as for Mozilla Firefox appear at the top of this page.

Author

This page was created by Bob Smith -- please direct any
questions or comments about it to me. See my other APL
projects.

© Sudley Place Software 1997-2016.

Comments or suggestions? Send them to sitemaster@sudleyplace.com.

mailto:sitemaster@sudleyplace.com
https://www.societyforscience.org/
http://www.libreoffice.org/
http://www.mozilla.org/products/thunderbird/
http://www.spreadfirefox.com/?q=affiliates&id=43096&t=64
http://www.sudleyplace.com/
http://jigsaw.w3.org/css-validator/check/referer?profile=css3
http://validator.w3.org/check?uri=referer
http://www.sudleyplace.com/APL/projects.html
mailto:bsmith@sudleyplace.com

