
A Combinatorial
Operator in APL

Bob Smith
Sudley Place Software

Originally Written
24 Aug 2016

Latest Update
23 Jun 2017

Table of Contents
Introduction
Twelvefold Way
Function Selector
Syntax
Arguments
Labeled vs. Unlabeled
Counting Partitions of a Set
Counting Partitions of a Number
The Twelve Algorithms
Case 000 Case 00 1 Case 00 2
Case 0 1 0 Case 0 11 Case 0 12
Case 1 00 Case 1 0 1 Case 1 0 2
Case 11 0 Case 111 Case 112

Summary of Related Algorithms
Similarities in The FS Table
Implementing the Algorithms
Open Questions
Future Work
Conclusions
Online Version
References

Introduction
Counting and generating items is fundamental in mathematics, but has
been sorely lacking in APL (notwithstanding the counting functions !R
and L!R); instead we have had to rely upon a patchwork of various
library routines.

Moreover, most APL papers on the topic have focused on the

-1-

implementation of the algorithms rather than their organization and
syntax mostly because, at the time, there was no unifying concept nor
common syntax.

The main purpose of this document is to present in APL a unified
organizing principle to classify and access various Combinatorial
Algorithms.

A secondary purpose is to shed light on the relationships between the
various algorithms through a new perspective provided by Gian-Carlo
Rota’s clever way to fit them into a single organizational framework.

The goal of this document is to describe a single APL primitive to both
count and generate various Combinatorial Arrays: permutations,
combinations, compositions, partitions, etc. The unifying (and very
APL-like) principle for such a primitive is Gian-Carlo Rota's Twelvefold
Way as described in Richard Stanley's "Enumerative Combinatorics"1,
Knuth’s TAoCP, Vol. 4A3, and Wikipedia2 among other references.

Twelvefold Way
This elegant notion consolidates twelve of these algorithms into a
single 2×2×3 array based on the simple concept of placing balls into
boxes (urns, to you old-timers). The three dimensions of the array can
be described as follows:

● The balls may be labeled (or not) {2 ways},
● The boxes may be labeled (or not) {2 ways}, and
● The # balls allowed in a box may be one of (at most one |

unrestricted | at least one) {3 ways}.

Amazingly, these twelve choices spanning three dimensions knit
together within a single concept (balls in boxes) all of the following
interesting, fundamental, and previously disparate and disorganized

-2-

Combinatorial Algorithms:

● Permutations ● Combinations
● Compositions ● Multisets
● Partitions of a set ● Partitions of a number
● Tuples ● Pigeon Holes

Function Selector
One way to design a primitive to encompass the Twelvefold Way is first
to define a one- or two-element integer vector as a function selector in
a manner similar to the left argument to dyadic Circle (L○R) and dyadic
Pi (LπR)8. The items in the vector V are described as follows where the
first element of V is split into three digits as in W←0 10 10⊤V[1]:

W[1] ∊ 0 1 for (unlabeled | labeled) balls
W[2] ∊ 0 1 for (unlabeled | labeled) boxes
W[3] ∊ 0 1 2 for the # balls allowed in each box corresponding to

the three possibilities of (at most one | unrestricted |
at least one), defined as

0 = ≤1 (at most one) ball in each box
1 = unrestricted
2 = ≥1 (at least one) ball in each box

The reasoning for the above choice is that 0 is
clearly a maximum unambiguous integer
representative of ≤1 and 2 is clearly a minimum
unambiguous integer representative of ≥1, and 1 is
in the middle, so it represents both ≤1 and ≥1, that
is, unrestricted.

V[2] ∊ 0 1 (optional) where 0 (the default) means count the #
solutions and 1 means generate them.

-3-

As a matrix, the algorithms are organized by function selector as
follows (and is referred to elsewhere as the FS Table):

FS Table
Balls Per Box

At Most One xx0 Unrestricted xx1 At Least One xx2

L unlabeled balls 00x

R unlabeled boxes
L pigeons 000

into R holes
partitions of L 001

into ≤R parts
partitions of L 002

into R parts

L unlabeled balls 01x

R labeled boxes
L-combinations
of R items 010

L-multisets 011

of R items
compositions of L 012

into R parts

L labeled balls 10x

R unlabeled boxes
L pigeons 100

into R holes
partitions of S 101

into ≤R parts
partitions of S 102

into R parts

L labeled balls 11x

R labeled boxes
L-permutations
of R items 110

L-tuples 111

of R items
partitions of S 112

into R ordered parts

where S is the set {⍳L}. The above table was copied with slight
changes from Knuth’s TAoCP, Vol 4A, p. 3904.

The colored cells in the above table are discussed in the sections her e,
her e, and her e.

Although the Function Selector is a simple integer, in this paper it is
written as a three-digit number with leading zeros to emphasize that
each digit has a separate meaning.

For example:

-4-

● A function selector of 010 means unlabeled balls, labeled boxes,
and at most one ball in each box.

If we have 2 unlabeled balls (●●) and 4 labeled boxes (1234) with
at most one ball per box, there are 6 (↔ 2!4) ways to meet these
criteria:

● ●
1 2 3 4

● ●
1 2 3 4

● ●
1 2 3 4

● ●
1 2 3 4

● ●
1 2 3 4

● ●
1 2 3 4

from which it is easy to see that these criteria correspond to L
combinations of R items (↔ L!R). See case 010 below.

● A function selector of 110 means labeled balls & boxes and at
most one ball in each box.

If we have 3 labeled balls (❶❷❸) and 3 labeled boxes (123) with
at most one ball per box, there are 6 (↔ (!⍠¯3)3 ↔ 3×2×1)
ways to meet these criteria:

❶ ❷ ❸

1 2 3
❷ ❶ ❸

1 2 3
❷ ❸ ❶

1 2 3
❶ ❸ ❷

1 2 3
❸ ❶ ❷

1 2 3
❸ ❷ ❶

1 2 3

If we have 2 labeled balls (❶❷) and 3 labeled boxes (123) with at
most one ball per box, there are 6 (↔ (!⍠¯2)3 ↔ 3×2) ways to
meet these criteria:

❶ ❷

1 2 3

❷ ❶

1 2 3

❷ ❶

1 2 3

❶ ❷

1 2 3

❶ ❷

1 2 3

❷ ❶

1 2 3

from which it is easy to see that these criteria correspond to L
permutations of R items. When L=R, this is the # permutations of
⍳R, (↔ !R), and when L<R, this is the # L-permutations, also

-5-

called the falling factorial (!⍠(-L))R. See case 110 below.

As a side note, the above examples reveal one of the many insights
the Twelvefold Way provides into Combinatorial Algorithms.
Previously, you might not have seen any connection between the
algorithms for Combinations and Permutations, but, as the above
examples show, they are closely related in that they differ only in the
use of labeled vs. unlabeled balls, both in labeled boxes with at most
one ball per box.

Syntax
One way of defining the syntax for such a Combinatorial Primitive is as
a monadic operator DoubleShriek (‼ – U+203C) deriving a monadic
function whose operand is the function selector (V) and whose right
argument is the # balls (L) & boxes (R) as in: V‼L R. This symbol can
be entered from the default keyboard layout with Alt-’k’ or Ctrl-’k’,
depending upon your choice of keyboard layouts.

The derived function from the operator is monadic only and mixed (i.e.,
not scalar). When generating results, some are sensitive to ⎕IO, and
some may be nested as not all items need be of the same rank and
shape.

Operand and Argument
The (left) operand is limited to non-negative integer scalars, and the
(right) argument is a non-negative (possibly multi-precision) integer
scalar or one- or two-element vector. If there is only one element in
the argument, it is treated as if it were duplicated as in (L R)←2⍴R.
Various Combinatorial Algorithms have been extended to other
datatypes (e.g., Hypercomplex numbers9), but I’ve chosen not to do
that for the initial design.

-6-

http://wiki.nars2000.org/index.php/Variant#Rising_and_Falling_Factorials

Labeled vs. Unlabeled
Boxes

For most cases, the boxes are the columns of the result. Two or more
labeled boxes may hold identical content, but because the boxes are
labeled, they are considered distinct. On the other hand, unlabeled
boxes with identical content are indistinguishable.

For example, the following (partial) configurations of 3 unlabeled balls
(●●●) in 3 unlabeled boxes

●
●
●

●
●
●

●
●
●

are all considered equivalent and are counted only once because the
boxes are unlabeled.

Similarly, the following (partial) configurations of 3 labeled balls (❶❷❸)
in 2 unlabeled boxes

❶
❷ ❸ ❸

❶
❷

❷
❶ ❸ ❸

❷
❶

are also all considered equivalent and are counted only once, again
because the boxes are unlabeled.

Note that the order of the (labeled) balls within a box is ignored which
means that even if the boxes were labeled, the first and third
configurations above are equivalent, as are the second and fourth.

Correspondingly, all other things being equal, a result for unlabeled

-7-

boxes can be expanded to a result for labeled boxes by labeling the
unlabeled boxes in all possible permutations. In particular, in cases
002 and 012 as well as 102 and 112 both pairs share this property.
Moreover, because cases 102 and 112 involve labeled balls their
counts differ exactly by a factor of !R; cases 002 and 012 use
unlabeled balls so their counts differ in a more complicated way.

Balls

In a similar manner, the counts and generations for combinations (010)
and permutations (110) differ by a factor of !L, this time because of the
balls: one is unlabeled and the other labeled. That is, the count for L
combinations of R items is

L!R ↔ (!R)÷(!R-L)×!L

and the count for L permutations of R items is

(!⍠(-L)) R ↔ (!R)÷!R-L

Of course, when L=R, the permutation count is the familiar !R.

See the examples above on the differences between labeled and
unlabeled balls.

Finally, the generations of permutations and combinations are related
as follows:

a←010 1‼L R L combinations of R items
b←110 1‼L L permutations of L items (L=R)
c←110 1‼L R L permutations of R items (L<R)
 c≡,[⎕IO+0 1] a[;b]

-8-

Counting Partitions of a Set
The counts in three of the cases below (101, 102, and 112) are
dependent on the Stirling numbers of the 2nd kind. They satisfy the
following recurrence relation defined on integer n≥0 and k≥0:

 S(0,0) = 1
 S(0,n) = S(n,0) = 0 for n>0
 S(n,k) = k × S(n-1,k) + S(n-1,k-1)

and, for the purposes of this paper, is implemented in the dyadic APL
function SN2. These numbers are used in the field of combinatorics
and the study of partitions of a set5.

As a side note, as the count for case 102 (the # of partitions of the set
{⍳L} into exactly R parts) is L SN2 R, the Stirling numbers of the 2nd
kind may be obtained from 102‼L R in case they are needed in
another context.

For example:

 ∘.SN2⍨ 0..10 ⍝ ←→ 102‼¨∘.,⍨0..10
 0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
 8
 9
10

 1 0 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 0 0
 0 1 1 0 0 0 0 0 0 0 0
 0 1 3 1 0 0 0 0 0 0 0
 0 1 7 6 1 0 0 0 0 0 0
 0 1 15 25 10 1 0 0 0 0 0
 0 1 31 90 65 15 1 0 0 0 0
 0 1 63 301 350 140 21 1 0 0 0
 0 1 127 966 1701 1050 266 28 1 0 0
 0 1 255 3025 7770 6951 2646 462 36 1 0
 0 1 511 9330 34105 42525 22827 5880 750 45 1

-9-

Counting Partitions of a Number
The counts in two of the cases below (001 and 002) are dependent on
the following recurrence relation for partitions defined on integer n and
k:

 P(0,0) = 1
 P(n,k) = 0 for n≤0 or k≤0
 P(n,k) = P(n-k,k) + P(n-1,k-1)

and, for the purposes of this paper, is implemented in the dyadic APL
function PN. These numbers are used in the field of combinatorics and
the study of partitions of a number7.

For example:

 ∘.PN⍨ 0..10 ⍝ ←→ 2‼¨∘.,⍨0..10
 0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9
10

 1 0 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 0 0
 0 1 1 0 0 0 0 0 0 0 0
 0 1 1 1 0 0 0 0 0 0 0
 0 1 2 1 1 0 0 0 0 0 0
 0 1 2 2 1 1 0 0 0 0 0
 0 1 3 3 2 1 1 0 0 0 0
 0 1 3 4 3 2 1 1 0 0 0
 0 1 4 5 5 3 2 1 1 0 0
 0 1 4 7 6 5 3 2 1 1 0
 0 1 5 8 9 7 5 3 2 1 1

If you have seen the movie “The Man Who Knew Infinity” (2015) (about
the life and academic career of the brilliant Indian mathematician
Srinivasa Ramanujan), you may recall that at one point it focuses on
the problem of calculating p(200) – the number of Partitions of the
number 200 into at most 200 parts. This number can be calculated by

-10-

http://www.imdb.com/title/tt0787524/

 1‼200
3972999029388

in a few hundred-thousandths of a second.

The Twelve Algorithms
The algorithms are presented in lexicographic order of the function
selector (000 through 112). The examples use the abbreviation #bpb =
“# balls per box”. All ⎕IO-sensitive results are in origin 1. The order of
the rows in matrix results and the items in nested array results is
unspecified.

-11-

Case 000: (Back to FS T able)

● L unlabeled balls into R unlabeled boxes, at most one per box
● Not ⎕IO-sensitive
● Result is a Boolean matrix.

This case is trivial: If L>R, then there is no answer, or more accurately,
the result is an empty matrix of shape 0 R. If L≤R, then the result is a
one-row matrix with L leading 1s and the rest 0s. Combining these
two cases yields a result of ((L≤R) R)⍴R↑L⍴1. It is identical to case
100.

The count for this function is L≤R.

For example:

If we have 3 unlabeled balls (●●●) and 5 unlabeled boxes with at most
one ball per box, there is only 1 (↔ 3≤5) way to meet these criteria:

● ● ●

The diagram above corresponds to

 000 1‼3 5
1 1 1 0 0

 ⍝ L pigeons into R holes
 ⍝ Unlabeled balls & boxes, ≤1 #bpb
 000 1‼4 5
1 1 1 1 0

-12-

Case 001: (Back to FS T able)

● L unlabeled balls, R unlabeled boxes, any # of balls per box
● Not ⎕IO-sensitive
● Result is a nested vector of integer vectors.

This case produces the partitions of the number L into at most R parts.

The count for this function is (L+R)PN R where PN is described
above. As shown in Wikipedia11, (L+R)PN R ↔ +/L PN¨0..R.

For example:

If we have 6 unlabeled balls (●●●●●●) and 3 unlabeled boxes with any
of balls per box, there are 7 (↔ (6+3)PN 3) ways to meet these
criteria:

●
●
●
●
●
●

●
●
●
●
● ●

●
●
●
●
●
●

●
●
●
● ● ●

●
●
●

●
●
●

●
●
●
●
● ●

●
●
●
●
●
●

The diagram above corresponds to the nested array

 ⍪001 1‼6 3
 6
 5 1
 4 2
 4 1 1
 3 3
 3 2 1
 2 2 2

-13-

 ⍝ Partitions of L into at most R parts
 ⍝ Unlabeled balls & boxes, any #bpb
 ⍪001 1‼5 5
 5
 4 1
 3 2
 3 1 1
 2 2 1
 2 1 1 1
 1 1 1 1 1
 ⍪001 1‼5 4
 5
 4 1
 3 2
 3 1 1
 2 2 1
 2 1 1 1
 ⍪001 1‼5 3
 5
 4 1
 3 2
 3 1 1
 2 2 1
 ⍪001 1‼5 2
 5
 4 1
 3 2
 ⍪001 1‼5 1
 5

Because partitions of L into R non-negative parts (001) is the same as
partitions of L+R into R positive parts (002), these cases are related by
the following identity:

001 1‼L R ↔ (⊂[⎕IO+1] ¯1+002 1‼(L+R) R)~¨0

-14-

Case 002: (Back to FS T able)

● L unlabeled balls, R unlabeled boxes, at least one ball per box
● Not ⎕IO-sensitive
● Result is an integer matrix.

This case produces the partitions of the number L into exactly R parts.

The count for this function is L PN R where PN is described above.

For example:

If we have 8 unlabeled balls (●●●●●●●●) and 3 unlabeled boxes with
at least one ball per box, there are 5 (↔ 8 PN 3) ways to meet these
criteria:

●
●
●
●
●
● ● ●

●
●
●
●
●
●
● ●

●
●
●
●

●
●
● ●

●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●

The diagram above corresponds to

 002 1‼8 3
6 1 1
5 2 1
4 3 1
4 2 2
3 3 2

-15-

 ⍝ Partitions of L into R parts
 ⍝ Unlabeled balls & boxes, ≥1 #bpb
 002 1‼5 5
1 1 1 1 1
 002 1‼5 4
2 1 1 1
 002 1‼5 3
3 1 1
2 2 1
 002 1‼5 2
4 1
3 2
 002 1‼5 1
5

Because partitions of L into R non-negative parts (001) is the same as
partitions of L+R into R positive parts (002), these cases are related by
the following identity (after sorting the rows):

002 1‼L R ↔ ⊃1+R↑¨001 1‼(0⌈L-R) R

-16-

Case 010: (Back to FS T able)

● L unlabeled balls, R labeled boxes, at most one ball per box
● Sensitive to ⎕IO
● Result is an integer matrix.

This case produces the L combinations of R items.

The count for this function is L!R.

For example:

If we have 2 unlabeled balls (●●) and 4 labeled boxes (1234) with at
most one ball per box, there are 6 (↔ 2!4) ways to meet these criteria:

● ●
1 2 3 4

● ●
1 2 3 4

● ●
1 2 3 4

● ●
1 2 3 4

● ●
1 2 3 4

● ●
1 2 3 4

and, in general, it’s easy to see that this case solves the familiar
problem of L combinations of R items.

The diagram above corresponds to

 010 1‼2 4
1 2
1 3
1 4
2 3
2 4
3 4
 ⍝ Combinations
 ⍝ Unlabeled balls, labeled boxes, ≤1 #bpb
 3!5
10

-17-

 010‼3 5
10
 010 0‼3 5
10
 ⍴010 1‼3 5
10 3
 010 1‼3 5
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

In general, this case is related to that of Multisets (011) and
Compositions (012) via the following identities:

010 1‼L R ↔ (011 1‼L,R-L-1)+[⎕IO+1] 0..L-1
011 1‼L R ↔ (010 1‼L,L+R-1)-[⎕IO+1] 0..L-1

010 1‼L R ↔ +\0 ¯1↓012 1‼⍠1 R L+1
012 1‼L R ↔ ¯2-\(010 1‼⍠1 R L-1),L

where ‼⍠1 uses the Variant operator ⍠ to evaluate ‼ in origin 1.

-18-

Case 011: (Back to FS T able)

● L unlabeled balls, R labeled boxes, any # balls per box
● Sensitive to ⎕IO
● Result is an integer matrix.

This case produces L multicombinations of R items. A
multicombination is a collection of multisets10 (sets which may contain
repeated elements) according to certain criteria. In particular, it
produces a matrix whose rows are multisets of length L, from the
values ⍳R.

The count for this function is L!L+R-1.

For example:

If we have 2 unlabeled balls (●●) and 3 labeled boxes (123) with any #
of balls per box, there are 6 (↔ 2!2+3-1) ways to meet these criteria:

●
●
1 2 3

● ●
1 2 3

● ●
1 2 3

●
●

1 2 3

● ●
1 2 3

●
●

1 2 3

The diagram above corresponds to:

 011 1‼2 3
1 1
1 2
1 3
2 2
2 3
3 3

-19-

 ⍝ L Multicombinations of R items
 ⍝ Unlabeled balls, labeled boxes, any #bpb
 011 1‼3 3
1 1 1
1 1 2
1 1 3
1 2 2
1 2 3
1 3 3
2 2 2
2 2 3
2 3 3
3 3 3
 011 1‼3 2
1 1 1
1 1 2
1 2 2
2 2 2
 011 1‼3 1
1 1 1

In general, this case is related to that of Combinations (010) via the
following identities:

010 1‼L R ↔ (011 1‼L,R-L-1)+[⎕IO+1] 0..L-1
011 1‼L R ↔ (010 1‼L,L+R-1)-[⎕IO+1] 0..L-1

-20-

Case 012: (Back to FS T able)

● L unlabeled balls, R labeled boxes, at least one ball per box
● Not ⎕IO-sensitive
● Result is an integer matrix.

This case produces compositions of the number L into R parts. A
composition is a way of representing a number as the sum of all
positive integers, in this case it’s a way of representing L as the sum of
R positive integers. It can also be thought of as a partition of L into R
ordered parts.

The count for this function is (L-R)!L-1.

For example:

If we have 5 unlabeled balls (●●●●●) and 3 labeled boxes (123) with
at least one ball per box, there are 6 (↔ (5-3)!5-1) ways to meet
these criteria:

● ●

●
●
●

1 2 3

●
●
●
●
●

1 2 3

●

●
●
● ●

1 2 3

●
● ●

●
●

1 2 3

●
●
●
● ●

1 2 3

●
●
● ● ●
1 2 3

The diagram above corresponds to

 012 1‼5 3
1 1 3
1 2 2
1 3 1
2 1 2
2 2 1
3 1 1

-21-

 ⍝ Compositions of L into R parts
 ⍝ Unlabeled balls, labeled boxes, ≥1 #bpb
 012 1‼5 5
1 1 1 1 1
 012 1‼5 4
1 1 1 2
1 1 2 1
1 2 1 1
2 1 1 1
 012 1‼5 3
1 1 3
1 2 2
1 3 1
2 1 2
2 2 1
3 1 1
 012 1‼5 2
1 4
2 3
3 2
4 1
 012 1‼5 1
5

In general, because the counts of both compositions (012) and
combinations (010) is a binomial coefficient, there might be a mapping
between the two, and indeed there is, as seen by the following
identities:

010 1‼L R ↔ +\0 ¯1↓012 1‼⍠1 R L+1
012 1‼L R ↔ ¯2-\(010 1‼⍠1 R L-1),L

where ‼⍠1 uses the Variant operator ⍠ to evaluate ‼ in origin 1.

-22-

Case 100: (Back to FS T able)

● L labeled balls, R unlabeled boxes, at most one ball per box
● Not ⎕IO-sensitive
● Result is a Boolean matrix.

This case is trivial: If L>R, then there is no answer, or more accurately,
the result is an empty matrix of shape 0 R. If L≤R, then the result is a
one-row matrix with L leading 1s and the rest 0s. Combining these
two cases yields a result of ((L≤R) R)⍴R↑L⍴1. It is identical to case
000.

The count for this function is L≤R.

For example:

If we have 3 labeled balls (❶❷❸) and 5 unlabeled boxes with at most
one ball per box, there is only 1 (↔ 3≤5) way to meet these criteria:

❶ ❷ ❸

The diagram above corresponds to

 100 1‼3 5
1 1 1 0 0
 ⍝ L pigeons into R holes
 ⍝ Labeled balls, unlabeled boxes, ≤1 #bpb
 100 1‼4 5
1 1 1 1 0

-23-

Case 101: (Back to FS T able)

● L labeled balls, R unlabeled boxes, any # balls per box
● Sensitive to ⎕IO
● Result is a nested vector of nested integer vectors.

This case produces partitions of the set {⍳L} into at most R parts.
Partitioning a set is different from partitioning a number in that the
former subdivides the set into non-empty disjoint subsets.

The count for this function is +/L SN2¨0..R where SN2 is described
above.

For example:

If we have 4 labeled balls (❶❷❸❹) and 2 unlabeled boxes with any # of
balls per box, there are 8 (↔ +/4 SN2¨0..2 ↔ +/0 1 7) ways to
meet these criteria:

❶
❷
❸
❹

❶
❷
❸ ❹

❶
❷
❹ ❸

❶
❷

❸
❹

❶
❸
❹ ❷

❶
❸

❷
❹

❶
❹

❷
❸ ❶

❷
❸
❹

The diagram above corresponds to the nested array

 ⍪101 1‼4 2
 1 2 3 4
 1 2 3 4
 1 2 4 3
 1 2 3 4
 1 3 4 2
 1 3 2 4
 1 4 2 3
 1 2 3 4

-24-

 ⍝ Partitions of {⍳L} into at most R parts
 ⍝ Labeled balls, unlabeled boxes, any #bpb
 101 0‼4 4
15
 101 0‼4 3
14
 101 0‼4 2
8
 101 0‼4 1
1
 101 0‼4 0
0

The first column in the following table serves to number the rows and is
referenced in 102. The second column illustrates the result of 101 1‼
4 4 as a nested array with 15 elements. The third column includes
visual separators to make it clearer where one subset stops and
another begins:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

 1 2 3 4
 1 2 3 4
 1 2 4 3
 1 2 3 4
 1 2 3 4
 1 3 4 2
 1 3 2 4
 1 3 2 4
 1 4 2 3
 1 2 3 4
 1 2 3 4
 1 4 2 3
 1 2 4 3
 1 2 3 4
 1 2 3 4

 1 2 3 4
 1 2 3|4
 1 2 4|3
 1 2|3 4
 1 2|3|4
 1 3 4|2
 1 3|2 4
 1 3|2|4
 1 4|2 3
 1|2 3 4
 1|2 3|4
 1 4|2|3
 1|2 4|3
 1|2|3 4
 1|2|3|4

See the next case for identities that relate 101 and 102.

-25-

Case 102: (Back to FS T able)

● L labeled balls, R unlabeled boxes, at least one ball per box
● Sensitive to ⎕IO
● Result is a nested vector of nested integer vectors.

This case produces partitions of the set {⍳L} into exactly R parts. As
such, it produces a subset of 101, limiting the result to just those rows
with L subsets.

The count for this function is L SN2 R where SN2 is described above.

For example:

If we have 4 labeled balls (❶❷❸❹) and 2 unlabeled boxes with at least
one ball per box, there are 7 (↔ 4 SN2 2) ways to meet these criteria:

❶
❷
❸ ❹

❶
❷
❹ ❸

❶
❷

❸
❹

❶
❸
❹ ❷

❶
❸

❷
❹

❶
❹

❷
❸ ❶

❷
❸
❹

The diagram above corresponds to the nested array

 ⍪102 1‼4 2
 1 2 3 4
 1 2 4 3
 1 2 3 4
 1 3 4 2
 1 3 2 4
 1 4 2 3
 1 2 3 4

-26-

 ⍝ Partitions of {⍳L} into R parts
 ⍝ Labeled balls, unlabeled boxes, ≥1 #bpb
 ⍝ The number to the right in parens
 ⍝ represent the corresponding row from
 ⍝ the table in case 101.

 ⍪102 1‼4 4
 1 2 3 4 (15)
 ⍪102 1‼4 3
 1 2 3 4 (5)
 1 3 2 4 (8)
 1 2 3 4 (11)
 1 4 2 3 (12)
 1 2 4 3 (13)
 1 2 3 4 (14)

 ⍪102 1‼4 2
 1 2 3 4 (2)
 1 2 4 3 (3)
 1 2 3 4 (4)
 1 3 4 2 (6)
 1 3 2 4 (7)
 1 4 2 3 (9)
 1 2 3 4 (10)
 ⍪102 1‼4 1
 1 2 3 4 (1)
 ⍪102 1‼4 0

In general, this case is related to 101 through the following identities
(after sorting the items):

101 1‼L R ↔ ⊃,/102 1‼¨L,¨0..R
102 1‼L R ↔ R {(⍺=≢¨⍵)/⍵} 101 1‼L R

and is related to 112 through the following identities:

102 1‼L R ↔ {(2≢/¯1,(⊂¨⍋¨⍵)⌷¨⍵)/⍵} 112 1‼L R
a←⊃102 1‼L R
b← 110 1‼R R
112 1‼L R ↔ ,⊂[⎕IO+2] a[;b]

-27-

Case 110: (Back to FS T able)

● L labeled balls, R labeled boxes, at most one ball per box
● Sensitive to ⎕IO
● Result is an integer matrix.

This case produces L-permutations (also called Partial Permutations or
Sequences Without Repetition) of R items, where when L=R produces
the familiar permutations !R. The length of each permutation returned
is always L.

The count for this function is (!⍠(-L))R where (!⍠L)R calculates the
rising or fa l ling f actorial.

For example:

If we have 3 labeled balls (❶❷❸) and 3 labeled boxes (123) with at
most one ball per box, there are 6 (↔ (!⍠¯3)3 ↔ 3×2×1) ways to
meet these criteria:

❶ ❷ ❸

1 2 3
❷ ❶ ❸

1 2 3
❷ ❸ ❶

1 2 3
❶ ❸ ❷

1 2 3
❸ ❶ ❷

1 2 3
❸ ❷ ❶

1 2 3

The diagram above corresponds to

 110 1‼3
1 2 3
2 1 3
2 3 1
1 3 2
3 1 2
3 2 1

-28-

http://wiki.nars2000.org/index.php/Variant#Rising_and_Falling_Factorials
http://wiki.nars2000.org/index.php/Variant#Rising_and_Falling_Factorials
http://wiki.nars2000.org/index.php/Variant#Rising_and_Falling_Factorials
http://wiki.nars2000.org/index.php/Variant#Rising_and_Falling_Factorials
http://wiki.nars2000.org/index.php/Variant#Rising_and_Falling_Factorials

 ⍝ Permutations of length L of R items
 ⍝ Labeled balls & boxes, ≤1 #bpb
 !3
6
 110‼3
6
 110 0‼3
6
 ⍴110 1‼3
6 3
 110 1‼3
1 2 3
2 1 3
2 3 1
1 3 2
3 1 2
3 2 1
 110 1‼2 3
1 2
2 1
1 3
3 1
2 3
3 2
 110 1‼1 3
1
2
3

A function to calculate the permutations of R items could be defined as

 perm←{110 1‼⍵}

-29-

Case 111: (Back to FS T able)

● L labeled balls, R labeled boxes, any # balls per box
● Sensitive to ⎕IO
● Result is an integer matrix.

This case produces L-tuples of R items. That is, all length L vectors
with all possibilities of R items in each position, R*L rows all together.

The count for this function is RL (↔ R*L).

For example:

If we have 2 labeled balls (❶❷) and 3 labeled boxes (123) with any #
of balls per box, there are 9 (↔ 3*2) ways to meet these criteria:

❶
❷

1 2 3
❶ ❷

1 2 3
❶ ❷

1 2 3
❷ ❶

1 2 3

❶
❷

1 2 3
❶ ❷

1 2 3
❷ ❶

1 2 3
❷ ❶

1 2 3

❶
❷

1 2 3

The diagram above corresponds to

 110 1‼2 3
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3

-30-

 ⍝ L-tuples of R items
 ⍝ Labeled balls & boxes, any #bpb
 111 0‼3 2
8
 111 1‼3 2
1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2

-31-

Case 112: (Back to FS T able)

● L labeled balls, R labeled boxes, at least one ball per box
● Sensitive to ⎕IO
● Result is a nested vector of nested integer vectors.

This case produces partitions of the set {⍳L} into R ordered parts.
Essentially, this case is the same as 102, except that the order of the
elements is important so that there are more results by a factor of !R.
For example, the 3-subset result of 1 2|3|4 for 102 is expanded to !
4 (↔ 24) 3-subsets by permuting the values 1 2 3 4 in 24 ways.

The count for this function is (!R)×L SN2 R where SN2 is described
above.

For example:

If we have 4 labeled balls (❶❷❸❹) and 2 labeled boxes (12) with at
least one ball per box, there are 14 (↔ (!2)×4 SN2 2 ↔ 2×7) ways
to meet these criteria:

❶
❷
❸ ❹

1 2
❹

❶
❷
❸

1 2

❶
❷
❹ ❸

1 2
❸

❶
❷
❹

1 2

❶
❷

❸
❹

1 2

❸
❹

❶
❷

1 2

❶
❸
❹ ❷

1 2

❷

❶
❸
❹

1 2

❶
❸

❷
❹

1 2

❷
❹

❶
❸

1 2

❶
❹

❷
❸

1 2

❷
❸

❶
❹

1 2
❶

❷
❸
❹

1 2

❷
❸
❹ ❶

1 2

The diagram above corresponds to the nested array

-32-

 ⍪112 1‼4 2
 1 2 3 4
 4 1 2 3
 1 2 4 3
 3 1 2 4
 1 2 3 4
 3 4 1 2
 1 3 4 2
 2 1 3 4
 1 3 2 4
 2 4 1 3
 1 4 2 3
 2 3 1 4
 1 2 3 4
 2 3 4 1
 ⍝ Partitions of the set {⍳L} into
 ⍝ R ordered parts
 ⍝ Labeled balls & boxes, any #bpb
 ⍪112 1‼3 3
 1 2 3
 2 1 3
 2 3 1
 1 3 2
 3 1 2
 3 2 1
 ⍪112 1‼3 2
 1 2 3
 3 1 2
 1 3 2
 2 1 3
 1 2 3
 2 3 1
 ⍪112 1‼3 1
 1 2 3

-33-

In general, this case is equivalent to calculating the unlabeled boxes
(102) and then permuting the items from that result as in

a←⊃102 1‼L R
b← 110 1‼R
112 1‼L R ↔ ,⊂[⎕IO+2] a[;b]

or vice-versa

102 1‼L R ↔ {(2≢/¯1,(⊂¨⍋¨⍵)⌷¨⍵)/⍵} 112 1‼R R

Summary of Related Algorithms
While the Twelvefold way consists of twelve Combinatorial Algorithms,
half of these algorithms can be defined in terms of the other half as
summarized in the following identities.

Note that some of the identities might not “match” identically from side
to side (as in a≡b) because their items are in a different order.
However, they do match when the order of the results is ignored, as in
a[⍋a]≡b[⍋b], or in the case of two matrices whose rows are in a
different order, a[⍋a;]≡b[⍋b;].

000 ↔ 100: Pigeons in holes

000 1‼L R ↔ 100 1‼L R

001 ↔ 002: Partitions of the number L into ≤R parts vs. into R parts

001 1‼L R ↔ (⊂[⎕IO+1] ¯1+002 1‼(L+R) R)~¨0
002 1‼L R ↔ ⊃1+R↑¨001 1‼(0⌈L-R) R

-34-

010 ↔ 011: Combinations vs. Multisets

010 1‼L R ↔ (011 1‼L,R-L-1)+[⎕IO+1] 0..L-1
011 1‼L R ↔ (010 1‼L,L+R-1)-[⎕IO+1] 0..L-1

010 ↔ 012: Combinations vs. Compositions

010 1‼L R ↔ +\0 ¯1↓012 1‼⍠1 R L+1 (‼⍠1 ↔ ‼ in origin 1)
012 1‼L R ↔ ¯2-\(010 1‼⍠1 R L-1),L

101 ↔ 102: Partitions of {⍳L} into ≤R parts vs. into R parts

101 1‼L R ↔ ⊃,/102 1‼L,¨0..R
102 1‼L R ↔ R {(⍺=≢¨⍵)/⍵} 101 1‼L R

102 ↔ 112: Partitions of {⍳L} into R parts vs. into R ordered parts

102 1‼L R ↔ {(2≢/¯1,(⊂¨⍋¨⍵)⌷¨⍵)/⍵} 112 1‼L R
a←⊃102 1‼L R
b← 110 1‼R
112 1‼L R ↔ ,⊂[⎕IO+2] a[;b]

110 ↔ 110: Permutations (L<R case in terms of the L=R case)

110 1‼L R ↔ ,[⎕IO+0 1](010 1‼L R)[;110 1‼L]

This means that out of the original twelve algorithms there are only six
independent ones of which a representative sample is

000 L pigeons into R holes
002 Partitions of the number L into R parts
010 L Combinations of R items
102 Partitions of the set {⍳L} into R parts
110 L Permutations of R items for L=R only, and
111 L Tuples of R items.

-35-

Similarities in The FS Table
There is a similarity in the FS Table between the two meanings in this
paper of the word partitions: of a number and of a set. There are five
cells about partitions plus one for compositions which are really
partitions of L into R ordered parts, so that’s six partitions; three of the
number L, and three of the set {⍳L}. As the table below shows, the
two meanings differ only in that three partitions of the number L all use
unlabeled balls and the three partitions of the set {⍳L} all use labeled
balls:

Partitions of the ...
number L into ... set {⍳L} into ...

at most R parts (001) at most R parts (101)
R parts (002) R parts (102)
R ordered parts (012) R ordered parts (112)

Implementing the Algorithms
The algorithms described here would normally be written in a lower
level language (e.g., C) and then be accessible from APL through this
primitive without the need for a separate (and less efficient) library of
APL routines.

There are many good sources for these algorithms in the literature as
well as on the Internet. Here’s a first cut as to the algorithms I plan to
use – please feel free to suggest others:

000: L Pigeons into R holes

Trivial – implement the following APL statement:
 Z←((L≤R) R)⍴R↑L⍴1

001: Partitions of the number L into at most R parts

-36-

Knuth's TAoCP, Vol 4A, p. 392, Algorithm P.

002: Partitions of the number L into R parts

Knuth’s TAoCP, Vol 4A, p. 392, Algorithm H.

010: L Combinations of R items

Knuth's TAoCP, Vol 4A, p. 359, Algorithm T.

011: L Multisets of R items

Implement the following APL statement:
 Z←(L comb L+R-1)-[1+⎕IO] 0..L-1
where L comb R generates all combinations of length L of R items
(comb ↔ {010 1‼⍺ ⍵}.

012: Compositions of L into R parts

Implement the following APL statements:
 ⎕IO←1
 Z←¯2-\((R-1) comb L-1),L
where L comb R generates all combinations of length L of R items
(comb ↔ {010 1‼⍺ ⍵}.

100: L Pigeons into R holes

Trivial – implement the following APL statement:
 Z←((L≤R) R)⍴R↑L⍴1

101: Partitions of the set {⍳L} into at most R parts

-37-

Knuth's TAoCP, Vol 4A, p. 416, Algorithm H as enum101sub modified
to include a specific test #1 as to which results are accepted, along
with an implementation of the following APL statements:
 b←⊂[1+⎕IO] L enum101sub R
 Z←(1+(⊂¨⍋¨b)⌷¨b)⊂¨⍋¨b

102: Partitions of the set {⍳L} into R parts

Knuth's TAoCP, Vol 4A, p. 416, Algorithm H as enum102sub modified
to include a specific test #2 as to which results are accepted, along
with an implementation of the following APL statements:
 b←⊂[1+⎕IO] L enum102sub R
 Z←(1+(⊂¨⍋¨b)⌷¨b)⊂¨⍋¨b

110: L Permutations of R items

Knuth's TAoCP, Vol 4A, p. 322, Algorithm P for the L=R case of
permutations. The L<R case is covered by implementing the following
APL statement:
 Z←,[⎕IO+0 1](L comb R)[;perm L]
where L comb R generates all combinations of length L of R items
(comb ↔ {010 1‼⍺ ⍵}, and perm L is from the above mentioned
Algorithm P.

111: L Tuples of R items

Trivial – implement the following APL statement:
 Z←((R*L)L)⍴∊∘.,/L⍴⊂⍪⍳R

112: Partitions of the set {⍳L} into R ordered parts

Implement the following APL statements:
 a←⊃102 1‼L R
 b← 110 1‼R
 Z←,⊂[⎕IO+2] a[;b]

-38-

Open Questions
● The choice of the “double shriek” (‼ – U+203C) for the symbol is

arbitrary – suggestions? Chi (χ) (U+03C7) for “chombinatorics”?
Get out your copy of Unicode and start searching. The font
CODE20036 is a good start for viewing the entire the Basic
Multilingual Plane.

● One reviewer suggested that we could change the syntax to a

single function (call it γ) and invoke it as in (L V)γR. Any
thoughts?

● Another reviewer suggested that we could change the syntax to a

single function (call it δ) and invoke it as in VδL R., where L R is
the usual # balls & # boxes which can be extended to multiple
arguments as both a two-column integer array as well as a nested
array of two-element integer vectors. Any thoughts?

Future Work
At a later time, we might add a feature to V[2] to specify not only
count vs. generation but, when generating, it can also specify the order
of the items in the result as unspecified, lexicographic, gray code, etc.,
assuming the requested order applies to the selected generation
function. For example, V[2]=0 for the count, V[2]=1 for generate in
unspecified order, V[2]=2 for lexicographic order, V[2]=3 for gray
code order, etc. For the moment, when generating, the order is
unspecified.

Also, the function selector could specify in a new element V[3] that
the result is to be returned one-by-one starting with a specified item so
as to avoid returning the entire result at once. That is, with V[2]≥1,
V[3] would range from 0 to the count of that particular function

-39-

selector and its arguments, where V[3]=0 means return the full result,
and otherwise, V[3]=N means return the Nth corresponding generated
value in the order (if any) as specified by V[2]. I realize that some
next-generation algorithms require as input the previous generation, so
this design would need to be modified to accommodate that need.

And finally, in case Twelvefold Ways isn’t enough, there is also a
Thirtyfold Way paper4!

Conclusions
● Rota’s amazing Twelvefold Way of consolidating numerous

Combinatorial Algorithms through the unifying concept of balls in
boxes into a single organizational framework is presented and
each algorithm is discussed in detail with examples.

● This organizational framework is ideally suited for implementation
in APL for both counting and generation by referencing the
individual algorithms using a function selector as the (left)
operand to a new monadic primitive operator.

● Insight into these Combinatorial Algorithms is gained when
viewed from the perspective of the Twelvefold Way. To wit:
 The relationships among the algorithms is made clearer when

comparing their APL versions, especially through identities.
 The algorithms are shown to have considerable dependence

amongst themselves as shown through APL identities.
 Interesting similarities within the function selector table are

identified and are worthy of further investigation.
● Thanks to the work of D. E. Knuth in his TAoCP Vol 4A, each of

the twelve ways has a high quality algorithm behind it.
● Finally, APL programmers need no longer search for the fastest

APL program to generate any of several Combinatorial Counts or
Generations as the fastest way is now available primitively.

-40-

Acknowledgments
No paper is written in isolation, and this paper is no exception. I’d like
to thank David Liebtag, Roy Sykes, Norman Thomson, Jim Brown,
Roger Hui, and Michael Turniansky for their helpful advice and
suggestions.

Online Version
This paper is an ongoing effort and can be out-of-date the next day. To
find the most recent version, go to http://sudleyplace.com/APL / and
look for the title of this paper on that page. There is also a workspace
online (http://www.nars2000.org/ download/ workspaces/) that models
this primitive with the user-defined operator dem used in place of the
double shriek ‼. In your browser, right click on the workspace name
and choose “Save Link As...” or “Save target as” to download the
workspace to your local hard drive and then)LOAD it from there from
within NARS2000.

References
1. Stanley, Richard P., "Enumerative Combinatorics", Volume 1, 2nd

edition, Cambridge University Press, p. 71, ISBN 0-521-66351-2
2. Wikipedia, "Twelvefold Way",

https://en.wikipedia.org/wiki/Twelvefold_way
3. Knuth, Donald E., “The Art of Computer Programming”, Addison

Wesley, Volume 4A, Combinatorial Algorithms, p. 390, ISBN 0-201-
89685-0

4. Proctor, Robert A., “Let’s Expand Rota’s Twelvefold Way For
Counting Partitions”,
http://www.math.unc.edu/Faculty/rap/30FoldWay.pdf

5. Wikipedia, “Stirling numbers of the second kind”,
https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind

-41-

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
http://www.math.unc.edu/Faculty/rap/30FoldWay.pdf
https://en.wikipedia.org/wiki/Twelvefold_way
http://www.nars2000.org/download/workspaces/
http://www.nars2000.org/download/workspaces/
http://www.nars2000.org/download/workspaces/
http://sudleyplace.com/APL

6. CODE2003, http://www.fontspace.com/st-gigafont-
typefaces/code2003

7. Wikipedia, “Partitions: Restricted part size or number of parts”,
https://en.wikipedia.org/wiki/Partition_(number_theory)#Restricted_
part_size_or_number_of_parts

8. NARS2000 Wiki, “Primes”,
http://wiki.nars2000.org/index.php/Primes

9. “Hypercomplex Numbers in APL”,
http://www.sudleyplace.com/APL/Hypercomplex%20Numbers
%20in%20APL.pdf

10. NARS2000 Wiki, “Multisets”,
http://wiki.nars2000.org/index.php/Multisets

11. Wikipedia, “TwelveFold Way”,
https://en.wikipedia.org/wiki/Twelvefold_way#case_fnx

-42-

https://en.wikipedia.org/wiki/Partition_(number_theory)#Restricted_part_size_or_number_of_parts
https://en.wikipedia.org/wiki/Partition_(number_theory)#Restricted_part_size_or_number_of_parts
https://en.wikipedia.org/wiki/Twelvefold_way#case_fnx
http://wiki.nars2000.org/index.php/Multisets
http://www.sudleyplace.com/APL/Hypercomplex%20Numbers%20in%20APL.pdf
http://www.sudleyplace.com/APL/Hypercomplex%20Numbers%20in%20APL.pdf
http://wiki.nars2000.org/index.php/Primes
http://www.fontspace.com/st-gigafont-typefaces/code2003
http://www.fontspace.com/st-gigafont-typefaces/code2003

