
50 Years of
APL Datatypes

Bob Smith
Sudley Place Software

Originally Written
29 Sep 2016

Updated
4 Nov 2016

Introduction
The language APL has progressed in fits and starts. Sometimes it
moves because someone has a great idea for a new primitive, but the
major moves have occurred because someone introduces a new
datatype. New datatypes have such a profound effect on the language
precisely because they apply to all primitives, and so each primitive is
re-evaluated in the light of the new datatype. In fact, that is a hallmark
of these datatypes in that they made us re-think all of the existing
primitives as well as consider defining new ones, and as a result
opened up new Application Domains.

What’s A Datatype?
For the purposes of this paper, I limit the discussion to Built-in Data
Types defined13 as “a data type for which the programming language
provides built-in support”.

It must be something that can be stored in a variable, but that’s not
necessarily precise enough as it leaves Shared Variables, Name
Associations, etc. in limbo. For my purposes, I require also that it also
be an object to which almost all primitive functions and operators are
sensitive (and not in the sense that the test is solely to decide whether
or not to generate an error).

-1-

Here’s my list of the major datatype milestones in APL.

Booleans
Booleans were the first datatype that caught my attention. As Philip
Abrams14 remembers “Booleans have existed from the beginning.
Iverson's A Programming Language (1962) had logical (aka boolean)
values. They were used, among other things, to control compression,
mask and mesh.” Bernecky credits Larry M. Breed with making a
“fundamental, far-reaching, design decision”9 to represent Boolean
data in APL\360 in the form we now have, unchanged in its format from
the original implementation in 1966.

They are ideally suited to construct loopless algorithms, a process
Bernecky aptly calls “the replacement of control flow by data flow,
frequently improving performance as a result of eliminating
conditionals”9. That’s a keen observation as one can think of the 1s
and 0s in a Boolean vector as saying do this, or do that – that is
Control Flow converted to Data Flow by virtue of using a Boolean
vector, or equivalently, a Control Structure replaced by a Data
Structure.

I found many uses for them, especially in what I called partition
functions6, the topic of a paper at APL79. According to Wikipedia1,
APL is one of the few (if not the only) programming language to take
full advantage of that datatype, not only storing the values one per bit,
but accessing them in a manner consistent with other datatypes (e.g.,
V[3] is the third element in V regardless of whether it’s an integer,
float, or Boolean). In addition, nearly every primitive treats them
specially often using a special higher performance algorithm such as
summing the bits in a Boolean vector by using a table of bytes. My
early papers on Booleans are collected into one file10.

Booleans are ideal for use in structural primitives such as Compression
and Expansion, both designed specifically for a Boolean left argument,

-2-

and they are returned by many primitives such as the fourteen dyadic
Boolean functions (=≠≤<>≥≡≢∨∧⍱⍲∊⍷) along with the monadic Not
function (~). These functions are also significant when their arguments
themselves are Boolean. Reduction and scan on Booleans are
handled specially for many of these same dyadic Boolean functions
and especially Plus reduction.

To illustrate this with an anecdote, some years ago I wrote a function
called RELABEL which relabels a user-defined function to use the set
of labels L1, L2, etc. The first item of business is to find all of the
labels and their references. The latter is tricky because one must skip
over the text that looks like a label but appears in a comment or in a
character constant, and at the same time avoid being fooled by a
comment symbol in a character constant or an unmatched quote mark
in a comment. The RELABEL function did all of this without a single
loop thanks to the use of Booleans.

The breadth and depth of the combinations of these functions
operating on Booleans and returning Booleans opened up for me a
wealth of algorithms as well as a way of thinking about data and
algorithms (Control vs. Data Flow). One of the most important reasons
for this was that, in a limited, but very useful sense, Expansion is an
inverse of Compression. This powerful relationship was exploited time
after time in my own code. One example of this is the algorithm for
Partitioned Plus Scan, which in modern notation looks like this

 P←1 0 0 1 0 1 0 0 0
 R←⍳⍴P
 P ⋄ R ⋄ +\R-P\¯2-\P/+\¯1↓0,R
1 0 0 1 0 1 0 0 0
1 2 3 4 5 6 7 8 9
1 3 6 4 9 6 13 21 30

where P is the Boolean partition vector (always with a leading 1). The
nested arrays solution to this is

-3-

 (+\P)⊂R
 1 2 3 4 5 6 7 8 9
 +\¨(+\P)⊂R
 1 3 6 4 9 6 13 21 30
 ∊+\¨(+\P)⊂R
1 3 6 4 9 6 13 21 30

Another very interesting observation on this one-liner is to note the two
interleaved pairs of inverses: P\ and P/ as one and ¯2-\ and +\ as
the other.

This interleaving of inverses forms an operator template called the
Commutator operator (deserving of its own symbol!) coming from
mathematics (in particular, Group Theory from the 1830s), the template
of which is

f-1g-1fg

or, in APL,

(f⍣¯1)(g⍣¯1)f g

Related to this is the Dual Operator whose template is very similar to
that of the Commutator Operator:

Commutator: (f⍣¯1)(g⍣¯1)f g
Dual: (g⍣¯1)f g

The Dual Operator is found everywhere, even outside programming
languages, such as Open a drawer, Change its contents, Close the
drawer.

These are yet other examples of what makes APL so interesting –
discovering templates such as this and the incorporating them into

-4-

your toolbox. Mathematics teaches us that, among other things, the
inverse is an important property of a function; APL makes it practical.
I’ll wager to say that there is no other programming language for which
such observations are so common.

The importance of this datatype is indicated with its introduction in
APL\360, the very first implementation of APL from IBM, and continuing
with its presence in nearly every implementation of an APL-like
interpreter since then.

The significance of Booleans is that they are the most compact storage
of data, their presence brings forth a host of fast special purpose
algorithms, and they occur often enough in normal computation that
this special treatment is very worthwhile.

Characters
Initially, APL systems were limited to uppercase italic and uppercase
underlined italic characters along with the special characters of APL
and a few others. As the language became more widely used, more
characters were added. IBM’s APL2 pioneered the way with its
National Language support based upon code pages11 and support for
both one- and four-byte characters.

After the Graphical User Interface (GUI) was introduced, APL vendors
scrambled to adapt to it. One outcome was the proliferation and
incompatibility of many different APL fonts which hindered transfer of
functions and data across APL implementations. The Unicode
standard largely did away with those incompatibilities as all APL
characters are present in Unicode at fixed agreed upon codepoints,
and could be displayed on any device that supports Unicode. As
hardware and software improved, it became easier and easier to
display APL characters anywhere you like.

Its significance is that, as standards are supposed to do, it unified the

-5-

competing and conflicting local specifications across APL vendors into
a cohesive whole with value well above and beyond just APL
characters.

Also, in the past APL has been criticized for “all those funny symbols”.
Now with introduction of Unicode, we can say “You think APL has lots
of funny symbols, let me show you Unicode”.

Nested Arrays
Nested arrays are near and dear to my heart as they represent my first
foray into APL systems development. It started with reading
voraciously Jim Brown’s doctoral thesis on “A Generalization of APL”5
sometime after I joined STSC in 1971. After moving to California in
1978 to work for Roy Sykes, I was called back to company
headquarters in Bethesda MD to design and implement Nested Arrays.
Actually, I was tasked only with designing the feature and when the
question of who would implement it came up, I just raised my hand,
which is how the first Nested Arrays Research System (NARS)7 was
born. My first task was to learn how to program in IBM Assembler
Language. They say that in order to learn a new programming
language well you need a good starter project to motivate you. Mine
was Nested Arrays.

The significance of nested arrays is that they removed the requirement
of shallow rectangularity in APL. In effect, we could now represent a
tree of data in a natural way. Before this, various techniques were
used such as padding out short character names (e.g., calendar month
names) with blanks so that a collection of such names fit into a
rectangular array, or my favorite was to use a Boolean vector to
partition data into different size pieces and then allow a function to be
applied separately to each piece as shown above. Nested Arrays
made all that so much easier.

We all remember those days of trying to fit non-rectangular data into a

-6-

rectangular array. Nested arrays led us into the woods so we could
see trees.

Our terminology changed, too. The arrays we were so use to were
now called “simple” arrays, the new ones “nested”. Heterogeneous
arrays were now possible, made by catenating scalar characters and
numbers. Enclose, Disclose, Partitioned Enclose, Pick, Split and Mix
(to use the old names), Depth, and Each (the only new operator) were
new primitives, and all of the old primitives were changed to
accommodate Nested Arrays. For example, monadic Iota and
Indexing were changed so that in combination, the identity A≡A[⍳⍴A]
which used to be true for vectors only now is true for all rank arrays,
even scalars.

Overall, of all the extensions made to APL over all the years, I consider
Nested Arrays to be the most pervasive as well as the only structural
datatype, and consequently the most significant.

Nested Arrays weren’t without controversy as there were two
competing designs called Floating and Grounded which differed in
many ways, but fundamentally on whether the enclose of a simple
scalar produced a new array or the same array. I was in the latter
camp which I think was Floating, but I’m not certain as those names
never really meant anything to me. Anyway, all of the major APL
implementations now use the same design, which, I think, is Floating.
You shouldn’t read into this that Floating is better than Grounded,
because many other factors (economic, etc.) affected the outcome.

Arithmetic Progression Arrays
This datatype is an outgrowth of the VSAPL datatype of Arithmetic
Progression Vectors. The extension from vectors to any rank/shape
array is straightforward. The data portion of the storage of an APA is of
fixed size; beyond the standard array header, it requires only two
additional signed integers of offset and multiplier. This makes it

-7-

possible to represent a huge array in a tiny amount of storage. This
datatype can also be used to represent the arbitrary reshape of an
integer singleton, in which case the offset is the value of the singleton
and the multiplier is zero, so it’s not only monadic iota that generates
an APV.

APVs can also be used by APL system programmers in indexing to
substitute for an elided array coordinate, so as not to have to handle
elided coordinates specially all through the indexing code.

Its significance is to provide a shorthand for a common structure
saving both storage space as well as execution time because this
datatype can be processed more efficiently by various primitives.

This datatype is an instance of an excellent idea of Bernecky’s called
Array Predicates8. In particular, APVs with a multiplier of 1 and an
offset of 0 or 1 are an example of the array predicate Permutation
Vectors. This predicate allows the system developer to handle such
arrays specially (and much faster) when various primitives encounter
them. For example, the grade of a PV can be done in linear time.
These array predicates cost essentially nothing in execution time and
are very simple to implement. Another array predicate that is of use
(and also costs next to nothing to assign and test for) is All2s used by
the Encode primitive as its left argument to return a Boolean result
from integer right arguments.

Complex Numbers
This datatype moved APL into the world of two-dimensional numbers.
They are the first step into Hypercomplex numbers. The term
dimension has two meanings here. One is the usual APL term of an
array coordinate, first dimension, last dimension, etc. The other
meaning is a mathematical one where it refers to the number of
coefficients of a number, where Real numbers have one coefficient,
Complex numbers have two, etc. Complex numbers are an optional

-8-

feature of the Extended APL Standard and are part of almost all major
APL implementations.

As my implementation of APL is an Experimental system, I decided to
extend Complex numbers beyond the usual floating point number
coefficients, and to allow the coefficients all to be one of 64-bit
integers, 64-bit floats, multiple-precision integers/rationals, or multiple-
precision floats.

Its significance is to address problems in mathematics, physics,
chemistry, biology, economics, electrical engineering, etc. where
previously we had to make do with user-defined functions that
simulated a Complex number. You may remember Paul Penfields’s
electric circuit analysis package Martha12. As with other datatypes,
Complex numbers opened up whole new application domains for APL
to address.

Hypercomplex Numbers
These numbers extend the mix of numeric datatypes from Real (one-)
and Complex (two-) numbers to Quaternions (four-) and Octonions
(eight-)dimensional numbers. Mathematicians have defined multi-
dimensional numbers beyond eight, however they have a fatal flaw
(called Zero Divisors) which makes them much less interesting.

Quaternions are used much more than you might think. Video games
often use them as they are convenient for rotating, scaling, and
translating figures on the screen all at the same time by multiplying by
one number. Also NASA uses them in commands for attitude control
systems sent to spaceships, etc2.

Octonions are the crazy uncle of datatypes and have not found many
practical uses as yet, although they are used in abstract mathematics
(exceptional Lie groups, string theory, special relativity, and quantum
logic)3.

-9-

I’ve found them fascinating and have written numerous papers on
Hypercomplex Numbers which can be found on my website4 on the
topics of overview, notation, implementation, quotients, and non-
commutativity. That is, Quaternions and Octonions are both non-
commutative; that is, a×b ←/→ b×a.

The significance of Quaternions and Octonions to the APL user is
unclear. More time is needed to apply them to various problems,
perhaps starting with spatial rotations.

Multiple Precision Numbers
These numbers allow APL to handle two new classes of problems:
ones that require an exact (as in infinitely precise) solution and ones
that require a highly precise but still inexact solution. MP numbers
come in two forms: integer/rational and floating point. That is, the
extend the fixed-precision datatypes of Integer and Floating Point to
the corresponding multiple-precision datatype.

MP Integer/Rational

This form is used when an exact solution is needed and no floating
point functions are used. For example,

 ⎕PP←5
 2*100×⍳2
1.2677E30 1.6069E60
 2*100×⍳2x
1267650600228229401496703205376
1606938044258990275541962092341162602522202993782792
835301376

showing how MP numbers calculate the full result. They also return
exact results in places you might not have expected:

-10-

 ⌹a←3 3⍴⍳7
¯0.19048 0.047619 0.14286
¯1.619 0.90476 ¯0.28571
 1.4762 ¯0.61905 0.14286
 ⌹b←3 3⍴⍳7x
 ¯4r21 1r21 1r7
¯34r21 19r21 ¯2r7
 31r21 ¯13r21 1r7
 (⌹a)+.×a
 1 5.5511E¯17 ¯1.1102E¯16
¯3.9968E¯15 1 ¯2.6645E¯15
 3.7748E¯15 1.7764E¯15 1
 (⌹b)+.×b
1 0 0
0 1 0
0 0 1

My favorite example comes from Project Euler where they ask for the
low-order ten digits of the sum of the first 1000 powers of N*N. The
obvious solution is to write ¯10↑⍕+/*⍨⍳1000 but of course that
expression quickly runs out of precision and yields an answer of infinity
(∞) because the integer exponents overflow the range of floating point
numbers. A trivial change to this failing solution converts the number
1000 from an integer to a multiple-precision integer and by appending
one character transforms it into a working solution
(¯10↑⍕+/*⍨⍳1000x) to yield the correct answer of 9110846700.
Note how the initial MP number propagates through the expression
returning an MP number at each stage. Key to this is that the system
doesn’t type demote MP numbers, even though they could be
represented in a smaller storage type. BTW, encountering this exact
problem is what convinced me to stop what I was doing and implement
multiple-precision numbers in NARS2000.

MP Floating Point

Multiple-precision floating point numbers on the other hand might not

-11-

be so obvious as to where you might use them. Most of us barely
understand fixed-precision FP much less multiple-precision. Do any of
us really know how much precision we need in our floating point
calculations? Not really (and I’m no exception), and that’s why we
need multiple-precision floating point numbers. In order to determine
whether or not your floating point calculations are working just fine or
are being strained to beyond their precision limit is to convert your
code to MP FP, run it, and compare the multiple- and fixed-precision
results. It turns out that it’s trivial to convert an APL program to its
multiple-precision version at which point you can easily experiment
with various levels of precision (including 64-bit FP this time as MP)
and see whether 64-bit FP numbers are working for you. If the results
are different (and they can be markedly different), then you need to re-
examine your algorithm’s use of 64-bit floats or just switch over to
using MP floats.

To illustrate this point, here’s a problem I found online with a simple
answer: find the limit as x approaches ∞ of x-∛(x3-x2). As an
anonymous function, this looks like f←{⍵-3√-/⍵*3 2}. Trying a
large value shows

 ⎕PP←40 ⋄ ⎕FPC←512
 f 1e6 ⋄ f 1e6x
0.3333334452472627
0.3333334444445061728806584663923417162208

Note that the fixed precision floating point result has eight (out of 17)
fewer correct significant digits than the MP result. In other words, for
this admittedly special calculation, fixed precision arithmetic for this
particular argument (1e6) generates an answer with almost half of its
significant digits wrong. Moreover, roughly speaking, as the argument
to the above function increases by a factor of ten, the fixed precision
result loses a significant digit, and the multi-precision result gains a
significant digit.

-12-

The reason for the loss of significant digits with each increasing power
of ten is straightforward. As the answer to the limit problem is ÷3, the
cube root is calculating a number ever closer to ⍵-÷3 so that the
difference between ⍵ and the cube root approaches ÷3. However, as
the cube root gains significant digits to the left of the decimal point (due
to the rising power of ten) it correspondingly loses significant digits to
the right of the decimal point (due to the fixed precision), and so the
difference between ⍵ and the cube root becomes less and less precise
to the point of being meaningless. The MP calculation has the same
problem, but its precision can be set to an arbitrarily large value so the
problem can be pushed back as far as you like.

While your fixed precision floating point calculations might not be this
extreme, it does illustrate how easy it is for a calculation to go awry
and produce many fewer significant digits than you might expect. The
moral of this story is don’t program in fixed precision floating point
arithmetic on a wing and a prayer. Use MP arithmetic to validate your
fixed precision floating point calculations.

As mentioned above, another key to the utility of MP numbers is the
ease of conversion between fixed- and multiple-precision arithmetic –
simply append to all numeric constants an x (for Extended-precision)
and you’re done. There’s no need to rewrite your code and then retest
it to make sure you haven’t introduced some bugs. Moreover, because
the system automatically promotes from MP Integer/Rational to MP
Floating Point, start by marking all constants as MP Integer and let the
system promote to MP Floating Point as needed – it all happens under
the hood, you don’t need to do anything more than run it. When I say
all numeric constants, I mean all, because every decimal number in
APL is expressible as a fraction, e.g., appending an x to (say) 1.1E¯2
yields the MP Rational (not Floating Point) number 11r1000. If the
constant were 1.2E¯2 , then appending an x yields 3r250 as the
system automatically removes common factors from the numerator and
denominator.

-13-

Implementing MP arithmetic is a big job as it touches every primitive,
and most particularly, every primitive that does numeric calculations
must duplicate that code in MP arithmetic. At the same time, that also
attests to its utility – every primitive can benefit from its presence. You
can find online excellent libraries of MP routines15,16. No matter how
much work it is to implement, MP really belongs in the language.

The significance of MP numbers is that they allow the user to address
new classes of problems that require more than the fixed precision of
integers and floats by making trivial changes to the existing fixed
precision code.

I have had both forms of MP numbers in my implementation of APL for
several years and, by example, have tried to convince Dyalog to put
them into their implementation. Now that you are all convinced that
you need MP numbers, I want you to turn to the nearest Dyalog
representative and say to them “We need multiple-precision numbers!”.

Conclusions
As you can infer from the above, I believe datatype is king. There have
been many individual functions and operators introduced over the last
50 years, but I see datatypes as having driven the most significant
changes in the language as well as making it more and more relevant
to modern problems.

I have been honored to have been present at the start of so many of
these events.

The last 47 years from when I was first introduced to APL in 1969 have
been an exciting adventure as I’ve been introduced to a way of thinking
about programming unlike any other. Although I’m programmed in
many other languages since 1969, APL is the one language I keep
coming back to – it just makes sense to me. Even after I left STSC in
1983 and my wife and I started our own software company, I was still

-14-

going to APL standards meetings and conferences. I used APL in our
software business for our flagship product 386MAX to create an
optimization algorithm. Once you’ve learned to think in APL, computer
programming and thinking logically in general becomes so much
easier.

Acknowledgments
I’d like to thank Philip Abrams, Bob Bernecky, David Liebtag, and
Roger Moore for their helpful advice.

Online Version
This paper is an ongoing effort and can be out-of-date the next day. To
find the most recent version, go to http://sudleyplace.com/APL / and
look for the title of this paper on that page.

References
1. Wikipedia, “Bit Array”,

https://en.wikipedia.org/wiki/Bit_array#Language_support
2. Wikipedia, “Quaternion”, https://en.wikipedia.org/wiki/Quaternion
3. Wikipedia, “Octonion”, https://en.wikipedia.org/wiki/Octonion
4. SudleyPlace.com, http://sudleyplace.com/APL
5. Brown, James A., “A Generalization of APL”, Ph. D. dissertation,

Syracuse University, 1971,
www.softwarepreservation.org/projects/apl/Books/AGENERALIZA
TIONOFAPL

6. Bob Smith, 1979, “A programming technique for non-rectangular
data”, In Proceedings of the international conference on APL: part
1 (APL '79), ACM, New York, NY, USA, pp. 362-369,
http://dl.acm.org/citation.cfm?id=804488

7. Bob Smith, 1981, “Nested arrays, operators, and functions”, In
Proceedings of the international conference on APL (APL '81),
ACM, New York, NY, USA, pp. 286-290,
http://dl.acm.org/citation.cfm?id=805376

-15-

http://sudleyplace.com/APL
http://dl.acm.org/citation.cfm?id=805376
http://dl.acm.org/citation.cfm?id=804488
http://www.softwarepreservation.org/projects/apl/Books/AGENERALIZATIONOFAPL
http://www.softwarepreservation.org/projects/apl/Books/AGENERALIZATIONOFAPL
http://sudleyplace.com/APL
https://en.wikipedia.org/wiki/Octonion
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Bit_array#Language_support

8. Robert Bernecky, 1998, “Reducing computational complexity with
array predicates”, In Proceedings of the APL98 conference on
Array Processing Languages, pp. 39-43,
http://dl.acm.org/citation.cfm?id=327614

9. Robert Bernecky, 2016, “A Compendium of SIMD Boolean
Array Algorithms in APL”, preliminary draft.

10. Bob Smith, 1982, “Boolean Functions, 2nd Ed.”, STSC,
http://www.sudleyplace.com/APL/boolean.pdf

11. Wikipedia, “Code Pages”, https://en.wikipedia.org/wiki/Code_page
12. MARTHA, http://marthallama.org/
13. Wikipedia, “Primitive data type”,

https://en.wikipedia.org/wiki/Primitive_data_type
14. Philip Abrams, 2016/10/02, personal communication.
15. Multiple-Precision Integer/Rational, http://mpir.org/
16. Multiple-Precision Floating Point, http://mpfr.org/

-16-

http://mpfr.org/
http://mpir.org/
https://en.wikipedia.org/wiki/Primitive_data_type
http://marthallama.org/
https://en.wikipedia.org/wiki/Code_page
http://www.sudleyplace.com/APL/boolean.pdf
http://dl.acm.org/citation.cfm?id=327614

