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Introduction
The language APL has progressed in fits and starts. Sometimes it 
moves because someone has a great idea for a new primitive, but the 
major moves have occurred because someone introduces a new 
datatype.  New datatypes have such a profound effect on the language
precisely because they apply to all primitives, and so each primitive is 
re-evaluated in the light of the new datatype.  In fact, that is a hallmark 
of these datatypes in that they made us re-think all of the existing 
primitives as well as consider defining new ones, and as a result 
opened up new Application Domains.

What’s A Datatype?
For the purposes of this paper, I limit the discussion to Built-in Data 
Types defined13 as “a data type for which the programming language 
provides built-in support”.

It must be something that can be stored in a variable, but that’s not 
necessarily precise enough as it leaves Shared Variables, Name 
Associations, etc. in limbo.  For my purposes, I require also that it also 
be an object to which almost all primitive functions and operators are 
sensitive (and not in the sense that the test is solely to decide whether 
or not to generate an error).
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Here’s my list of the major datatype milestones in APL.

Booleans
Booleans were the first datatype that caught my attention.  As Philip 
Abrams14 remembers “Booleans have existed from the beginning.  
Iverson's A Programming Language (1962) had logical (aka boolean) 
values.  They were used, among other things, to control compression, 
mask and mesh.”  Bernecky credits Larry M. Breed with making a 
“fundamental, far-reaching, design decision”9 to represent Boolean 
data in APL\360 in the form we now have, unchanged in its format from
the original implementation in 1966.

They are ideally suited to construct loopless algorithms, a process 
Bernecky aptly calls “the replacement of control flow by data flow, 
frequently improving performance as a result of eliminating 
conditionals”9.  That’s a keen observation as one can think of the 1s 
and 0s in a Boolean vector as saying do this, or do that – that is 
Control Flow converted to Data Flow by virtue of using a Boolean 
vector, or equivalently, a Control Structure replaced by a Data 
Structure.

I found many uses for them, especially in what I called partition 
functions6, the topic of a paper at APL79.  According to Wikipedia1, 
APL is one of the few (if not the only) programming language to take 
full advantage of that datatype, not only storing the values one per bit, 
but accessing them in a manner consistent with other datatypes (e.g., 
V[3] is the third element in V regardless of whether it’s an integer, 
float, or Boolean).  In addition, nearly every primitive treats them 
specially often using a special higher performance algorithm such as 
summing the bits in a Boolean vector by using a table of bytes.  My 
early papers on Booleans are collected into one file10.

Booleans are ideal for use in structural primitives such as Compression
and Expansion, both designed specifically for a Boolean left argument, 

-2-



and they are returned by many primitives such as the fourteen dyadic 
Boolean functions (=≠≤<>≥≡≢∨∧⍱⍲∊⍷) along with the monadic Not 
function (~).  These functions are also significant when their arguments
themselves are Boolean.  Reduction and scan on Booleans are 
handled specially for many of these same dyadic Boolean functions 
and especially Plus reduction.

To illustrate this with an anecdote, some years ago I wrote a function 
called RELABEL which relabels a user-defined function to use the set 
of labels L1, L2, etc.  The first item of business is to find all of the 
labels and their references.  The latter is tricky because one must skip 
over the text that looks like a label but appears in a comment or in a 
character constant, and at the same time avoid being fooled by a 
comment symbol in a character constant or an unmatched quote mark 
in a comment.  The RELABEL function did all of this without a single 
loop thanks to the use of Booleans.

The breadth and depth of the combinations of these functions 
operating on Booleans and returning Booleans opened up for me a 
wealth of algorithms as well as a way of thinking about data and 
algorithms (Control vs. Data Flow).  One of the most important reasons
for this was that, in a limited, but very useful sense, Expansion is an 
inverse of Compression.  This powerful relationship was exploited time 
after time in my own code.  One example of this is the algorithm for 
Partitioned Plus Scan, which in modern notation looks like this

      P←1 0 0 1 0 1 0 0 0
      R←⍳⍴P
      P ⋄ R ⋄ +\R-P\¯2-\P/+\¯1↓0,R
1 0 0 1 0 1 0 0 0 
1 2 3 4 5 6 7 8 9 
1 3 6 4 9 6 13 21 30

where P is the Boolean partition vector (always with a leading 1).  The 
nested arrays solution to this is
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      (+\P)⊂R
 1 2 3  4 5  6 7 8 9
      +\¨(+\P)⊂R
 1 3 6  4 9  6 13 21 30
      ∊+\¨(+\P)⊂R
1 3 6 4 9 6 13 21 30

Another very interesting observation on this one-liner is to note the two
interleaved pairs of inverses:  P\ and P/ as one and ¯2-\ and +\ as 
the other.

This interleaving of inverses forms an operator template called the 
Commutator operator (deserving of its own symbol!) coming from 
mathematics (in particular, Group Theory from the 1830s), the template
of which is

f-1g-1fg

or, in APL,

(f⍣¯1)(g⍣¯1)f g

Related to this is the Dual Operator whose template is very similar to 
that of the Commutator Operator:

Commutator: (f⍣¯1)(g⍣¯1)f g
Dual:       (g⍣¯1)f g

The Dual Operator is found everywhere, even outside programming 
languages, such as Open a drawer, Change its contents, Close the 
drawer.

These are yet other examples of what makes APL so interesting – 
discovering templates such as this and the incorporating them into 
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your toolbox.  Mathematics teaches us that, among other things, the 
inverse is an important property of a function; APL makes it practical.  
I’ll wager to say that there is no other programming language for which 
such observations are so common.

The importance of this datatype is indicated with its introduction in 
APL\360, the very first implementation of APL from IBM, and continuing
with its presence in nearly every implementation of an APL-like 
interpreter since then.

The significance of Booleans is that they are the most compact storage
of data, their presence brings forth a host of fast special purpose 
algorithms, and they occur often enough in normal computation that 
this special treatment is very worthwhile.

Characters
Initially, APL systems were limited to uppercase italic and uppercase 
underlined italic characters along with the special characters of APL 
and a few others.  As the language became more widely used, more 
characters were added.  IBM’s APL2 pioneered the way with its 
National Language support based upon code pages11 and support for 
both one- and four-byte characters.

After the Graphical User Interface (GUI) was introduced, APL vendors 
scrambled to adapt to it.  One outcome was the proliferation and 
incompatibility of many different APL fonts which hindered transfer of 
functions and data across APL implementations.  The Unicode 
standard largely did away with those incompatibilities as all APL 
characters are present in Unicode at fixed agreed upon codepoints, 
and could be displayed on any device that supports Unicode.  As 
hardware and software improved, it became easier and easier to 
display APL characters anywhere you like.

Its significance is that, as standards are supposed to do, it unified the 

-5-



competing and conflicting local specifications across APL vendors into 
a cohesive whole with value well above and beyond just APL 
characters.

Also, in the past APL has been criticized for “all those funny symbols”. 
Now with introduction of Unicode, we can say “You think APL has lots 
of funny symbols, let me show you Unicode”.

Nested Arrays
Nested arrays are near and dear to my heart as they represent my first
foray into APL systems development.  It started with reading 
voraciously Jim Brown’s doctoral thesis on “A Generalization of APL”5 
sometime after I joined STSC in 1971.  After moving to California in 
1978 to work for Roy Sykes, I was called back to company 
headquarters in Bethesda MD to design and implement Nested Arrays.
Actually, I was tasked only with designing the feature and when the 
question of who would implement it came up, I just raised my hand, 
which is how the first Nested Arrays Research System (NARS)7 was 
born.  My first task was to learn how to program in IBM Assembler 
Language.  They say that in order to learn a new programming 
language well you need a good starter project to motivate you.  Mine 
was Nested Arrays.

The significance of nested arrays is that they removed the requirement
of shallow rectangularity in APL.  In effect, we could now represent a 
tree of data in a natural way.  Before this, various techniques were 
used such as padding out short character names (e.g., calendar month
names) with blanks so that a collection of such names fit into a 
rectangular array, or my favorite was to use a Boolean vector to 
partition data into different size pieces and then allow a function to be 
applied separately to each piece as shown above.  Nested Arrays 
made all that so much easier.

We all remember those days of trying to fit non-rectangular data into a 
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rectangular array.  Nested arrays led us into the woods so we could 
see trees.

Our terminology changed, too.  The arrays we were so use to were 
now called “simple” arrays, the new ones “nested”.  Heterogeneous 
arrays were now possible, made by catenating scalar characters and 
numbers.  Enclose, Disclose, Partitioned Enclose, Pick, Split and Mix 
(to use the old names), Depth, and Each (the only new operator) were 
new primitives, and all of the old primitives were changed to 
accommodate Nested Arrays.  For example, monadic Iota and 
Indexing were changed so that in combination, the identity A≡A[⍳⍴A] 
which used to be true for vectors only now is true for all rank arrays, 
even scalars.

Overall, of all the extensions made to APL over all the years, I consider
Nested Arrays to be the most pervasive as well as the only structural 
datatype, and consequently the most significant.

Nested Arrays weren’t without controversy as there were two 
competing designs called Floating and Grounded which differed in 
many ways, but fundamentally on whether the enclose of a simple 
scalar produced a new array or the same array.  I was in the latter 
camp which I think was Floating, but I’m not certain as those names 
never really meant anything to me.  Anyway, all of the major APL 
implementations now use the same design, which, I think, is Floating.  
You shouldn’t read into this that Floating is better than Grounded, 
because many other factors (economic, etc.) affected the outcome.

Arithmetic Progression Arrays
This datatype is an outgrowth of the VSAPL datatype of Arithmetic 
Progression Vectors.  The extension from vectors to any rank/shape 
array is straightforward.  The data portion of the storage of an APA is of
fixed size; beyond the standard array header, it requires only two 
additional signed integers of offset and multiplier.  This makes it 
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possible to represent a huge array in a tiny amount of storage.  This 
datatype can also be used to represent the arbitrary reshape of an 
integer singleton, in which case the offset is the value of the singleton 
and the multiplier is zero, so it’s not only monadic iota that generates 
an APV.

APVs can also be used by APL system programmers in indexing to 
substitute for an elided array coordinate, so as not to have to handle 
elided coordinates specially all through the indexing code.

Its significance is to provide a shorthand for a common structure 
saving both storage space as well as execution time because this 
datatype can be processed more efficiently by various primitives.

This datatype is an instance of an excellent idea of Bernecky’s called 
Array Predicates8.  In particular, APVs with a multiplier of 1 and an 
offset of 0 or 1 are an example of the array predicate Permutation 
Vectors.  This predicate allows the system developer to handle such 
arrays specially (and much faster) when various primitives encounter 
them.  For example, the grade of a PV can be done in linear time.  
These array predicates cost essentially nothing in execution time and 
are very simple to implement.  Another array predicate that is of use 
(and also costs next to nothing to assign and test for) is All2s used by 
the Encode primitive as its left argument to return a Boolean result 
from integer right arguments.

Complex Numbers
This datatype moved APL into the world of two-dimensional numbers.  
They are the first step into Hypercomplex numbers.  The term 
dimension has two meanings here.  One is the usual APL term of an 
array coordinate, first dimension, last dimension, etc.  The other 
meaning is a mathematical one where it refers to the number of 
coefficients of a number, where Real numbers have one coefficient, 
Complex numbers have two, etc.  Complex numbers are an optional 
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feature of the Extended APL Standard and are part of almost all major 
APL implementations.

As my implementation of APL is an Experimental system, I decided to 
extend Complex numbers beyond the usual floating point number 
coefficients, and to allow the coefficients all to be one of 64-bit 
integers, 64-bit floats, multiple-precision integers/rationals, or multiple-
precision floats.

Its significance is to address problems in mathematics, physics, 
chemistry, biology, economics, electrical engineering, etc. where 
previously we had to make do with user-defined functions that 
simulated a Complex number.  You may remember Paul Penfields’s 
electric circuit analysis package Martha12.  As with other datatypes, 
Complex numbers opened up whole new application domains for APL 
to address.

Hypercomplex Numbers
These numbers extend the mix of numeric datatypes from Real (one-) 
and Complex (two-) numbers to Quaternions (four-)  and Octonions 
(eight-)dimensional numbers.  Mathematicians have defined multi-
dimensional numbers beyond eight, however they have a fatal flaw 
(called Zero Divisors) which makes them much less interesting.

Quaternions are used much more than you might think.  Video games 
often use them as they are convenient for rotating, scaling, and 
translating figures on the screen all at the same time by multiplying by 
one number.  Also NASA uses them in commands for attitude control 
systems sent to spaceships, etc2.

Octonions are the crazy uncle of datatypes and have not found many 
practical uses as yet, although they are used in abstract mathematics 
(exceptional Lie groups, string theory, special relativity, and quantum 
logic)3.
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I’ve found them fascinating and have written numerous papers on 
Hypercomplex Numbers which can be found on my website4 on the 
topics of overview, notation, implementation, quotients, and non-
commutativity.  That is, Quaternions and Octonions are both non-
commutative; that is, a×b ←/→ b×a.

The significance of Quaternions and Octonions to the APL user is 
unclear.  More time is needed to apply them to various problems, 
perhaps starting with spatial rotations.

Multiple Precision Numbers
These numbers allow APL to handle two new classes of problems:  
ones that require an exact (as in infinitely precise) solution and ones 
that require a highly precise but still inexact solution.  MP numbers 
come in two forms: integer/rational and floating point.  That is, the 
extend the fixed-precision datatypes of Integer and Floating Point to 
the corresponding multiple-precision datatype.

MP Integer/Rational

This form is used when an exact solution is needed and no floating 
point functions are used.  For example,

      ⎕PP←5
      2*100×⍳2
1.2677E30 1.6069E60
      2*100×⍳2x
1267650600228229401496703205376 
1606938044258990275541962092341162602522202993782792
835301376

showing how MP numbers calculate the full result.  They also return 
exact results in places you might not have expected:
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      ⌹a←3 3⍴⍳7
¯0.19048  0.047619  0.14286
¯1.619    0.90476  ¯0.28571
 1.4762  ¯0.61905   0.14286
      ⌹b←3 3⍴⍳7x
 ¯4r21   1r21  1r7
¯34r21  19r21 ¯2r7
 31r21 ¯13r21  1r7
      (⌹a)+.×a
 1          5.5511E¯17 ¯1.1102E¯16
¯3.9968E¯15 1          ¯2.6645E¯15
 3.7748E¯15 1.7764E¯15  1         
      (⌹b)+.×b
1 0 0
0 1 0
0 0 1

My favorite example comes from Project Euler where they ask for the 
low-order ten digits of the sum of the first 1000 powers of N*N.  The 
obvious solution is to write ¯10↑⍕+/*⍨⍳1000 but of course that 
expression quickly runs out of precision and yields an answer of infinity
(∞) because the integer exponents overflow the range of floating point 
numbers.  A trivial change to this failing solution converts the number 
1000 from an integer to a multiple-precision integer and by appending 
one character transforms it into a working solution 
(¯10↑⍕+/*⍨⍳1000x) to yield the correct answer of 9110846700.  
Note how the initial MP number propagates through the expression 
returning an MP number at each stage.  Key to this is that the system 
doesn’t type demote MP numbers, even though they could be 
represented in a smaller storage type.  BTW, encountering this exact 
problem is what convinced me to stop what I was doing and implement
multiple-precision numbers in NARS2000.

MP Floating Point

Multiple-precision floating point numbers on the other hand might not 
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be so obvious as to where you might use them.  Most of us barely 
understand fixed-precision FP much less multiple-precision.  Do any of 
us really know how much precision we need in our floating point 
calculations?  Not really (and I’m no exception), and that’s why we 
need multiple-precision floating point numbers.  In order to determine 
whether or not your floating point calculations are working just fine or 
are being strained to beyond their precision limit is to convert your 
code to MP FP, run it, and compare the multiple- and fixed-precision 
results.  It turns out that it’s trivial to convert an APL program to its 
multiple-precision version at which point you can easily experiment 
with various levels of precision (including 64-bit FP this time as MP) 
and see whether 64-bit FP numbers are working for you.  If the results 
are different (and they can be markedly different), then you need to re-
examine your algorithm’s use of 64-bit floats or just switch over to 
using MP floats.

To illustrate this point, here’s a problem I found online with a simple 
answer:  find the limit as x approaches ∞ of x-∛(x3-x2).  As an 
anonymous function, this looks like f←{⍵-3√-/⍵*3 2}.  Trying a 
large value shows

      ⎕PP←40 ⋄ ⎕FPC←512
      f 1e6 ⋄ f 1e6x
0.3333334452472627
0.3333334444445061728806584663923417162208

Note that the fixed precision floating point result has eight (out of 17) 
fewer correct significant digits than the MP result.  In other words, for 
this admittedly special calculation, fixed precision arithmetic for this 
particular argument (1e6) generates an answer with almost half of its 
significant digits wrong.  Moreover, roughly speaking, as the argument 
to the above function increases by a factor of ten, the fixed precision 
result loses a significant digit, and the multi-precision result gains a 
significant digit.
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The reason for the loss of significant digits with each increasing power 
of ten is straightforward.  As the answer to the limit problem is ÷3, the 
cube root is calculating a number ever closer to ⍵-÷3 so that the 
difference between ⍵ and the cube root approaches ÷3.  However, as 
the cube root gains significant digits to the left of the decimal point (due
to the rising power of ten) it correspondingly loses significant digits to 
the right of the decimal point (due to the fixed precision), and so the 
difference between ⍵ and the cube root becomes less and less precise
to the point of being meaningless.  The MP calculation has the same 
problem, but its precision can be set to an arbitrarily large value so the 
problem can be pushed back as far as you like.

While your fixed precision floating point calculations might not be this 
extreme, it does illustrate how easy it is for a calculation to go awry 
and produce many fewer significant digits than you might expect.  The 
moral of this story is don’t program in fixed precision floating point 
arithmetic on a wing and a prayer.  Use MP arithmetic to validate your 
fixed precision floating point calculations.

As mentioned above, another key to the utility of MP numbers is the 
ease of conversion between fixed- and multiple-precision arithmetic – 
simply append to all numeric constants an x (for Extended-precision) 
and you’re done.  There’s no need to rewrite your code and then retest 
it to make sure you haven’t introduced some bugs.  Moreover, because
the system automatically promotes from MP Integer/Rational to MP 
Floating Point, start by marking all constants as MP Integer and let the 
system promote to MP Floating Point as needed – it all happens under 
the hood, you don’t need to do anything more than run it.  When I say 
all numeric constants, I mean all, because every decimal number in 
APL is expressible as a fraction, e.g., appending an x to (say) 1.1E¯2 
yields the MP Rational (not Floating Point) number 11r1000.  If the 
constant were 1.2E¯2 , then appending an x yields 3r250 as the 
system automatically removes common factors from the numerator and
denominator.
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Implementing MP arithmetic is a big job as it touches every primitive, 
and most particularly, every primitive that does numeric calculations 
must duplicate that code in MP arithmetic.  At the same time, that also 
attests to its utility – every primitive can benefit from its presence.  You 
can find online excellent libraries of MP routines15,16.  No matter how 
much work it is to implement, MP really belongs in the language.

The significance of MP numbers is that they allow the user to address 
new classes of problems that require more than the fixed precision of 
integers and floats by making trivial changes to the existing fixed 
precision code.

I have had both forms of MP numbers in my implementation of APL for 
several years and, by example, have tried to convince Dyalog to put 
them into their implementation.  Now that you are all convinced that 
you need MP numbers, I want you to turn to the nearest Dyalog 
representative and say to them “We need multiple-precision numbers!”.

Conclusions
As you can infer from the above, I believe datatype is king.  There have
been many individual functions and operators introduced over the last 
50 years, but I see datatypes as having driven the most significant 
changes in the language as well as making it more and more relevant 
to modern problems.

I have been honored to have been present at the start of so many of 
these events.

The last 47 years from when I was first introduced to APL in 1969 have
been an exciting adventure as I’ve been introduced to a way of thinking
about programming unlike any other.  Although I’m programmed in 
many other languages since 1969, APL is the one language I keep 
coming back to – it just makes sense to me.  Even after I left STSC in 
1983 and my wife and I started our own software company, I was still 
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going to APL standards meetings and conferences.  I used APL in our 
software business for our flagship product 386MAX to create an 
optimization algorithm.  Once you’ve learned to think in APL, computer 
programming and thinking logically in general becomes so much 
easier.
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